Abstract
Recent technological advances in electronics, sensors, and communications have accelerated the widespread deployment of Unmanned Aircraft System (UAS)-Aided applications. Nevertheless, networks composed of multiple UAS and ground stations, referred to as UAS-Aided communications networks, have yet to receive sufficient research attention. In this paper, we address a fundamental research challenge stunting such networks, which is how to fairly maximize the energy efficiency (throughput per energy) in networks comprising adaptive modulation-capable ground nodes. For the mobility pattern intrinsic to the UASs, we demonstrate how adaptive modulation is affected. Furthermore, we formulate the problem of maximizing fair energy efficiency as a potential game that is played between the multiple ground nodes and substantiate its stability, optimality, and convergence. Based on the formulated potential game, a data collection method is proposed to maximize the energy efficiency with a fairness constraint. Additionally, we analyze the Price of Anarchy of our proposed game-Theoretic data collection method. Extensive simulations exhibit the effectiveness of our proposal under varying environments.
Original language | English |
---|---|
Article number | 6867394 |
Pages (from-to) | 305-316 |
Number of pages | 12 |
Journal | IEEE Transactions on Wireless Communications |
Volume | 14 |
Issue number | 1 |
DOIs | |
Publication status | Published - 2015 Jan 1 |
Keywords
- Unmanned Aircraft System (UAS)-Aided networks
- adaptive modulation
- energy efficiency
- fairness
- game theory
- throughput per energy
- wireless network optimization
ASJC Scopus subject areas
- Computer Science Applications
- Electrical and Electronic Engineering
- Applied Mathematics