Tiny magnetic wireless pump: Fabrication of magnetic impeller and magnetic wireless manipulation for blood circulation in legs

Sung Hoon Kim, Chang Ho Yu, K. Ishiyama

Research output: Contribution to journalArticle

1 Citation (Scopus)

Abstract

This paper introduces a wireless pump that uses magnetic wireless manipulation to pump blood in the legs. A compact size and sufficient hydrodynamic performance were the most important requirements. Because the bonded magnet technique allows for a complex shape and various magnetization orientations, we fabricated a magnetic impeller from magnetic SmFeN powder. The impellers demonstrated a magnetic moment of 2772.64 emu and coercive force of 7.55 kOe. Using the impeller, we developed a tiny blood pump with a diameter of 22 mm and height of 6 mm. The pump allows for a maximum flow rate of 2.7 l/min and maximum pump head of approximately 170 mm Hg at a rotating speed of 6000 rpm. This level of hydrodynamic performance is sufficient to circulate blood in the legs. In this paper, we present the magnetic properties of the magnetic impeller and the hydrodynamic performance with wireless operation.

Original languageEnglish
Article number17B311
JournalJournal of Applied Physics
Volume117
Issue number17
DOIs
Publication statusPublished - 2015 May 7

ASJC Scopus subject areas

  • Physics and Astronomy(all)

Fingerprint Dive into the research topics of 'Tiny magnetic wireless pump: Fabrication of magnetic impeller and magnetic wireless manipulation for blood circulation in legs'. Together they form a unique fingerprint.

  • Cite this