Three-dimensional flow dynamics of an argon RF plasma with dc jet assistance: A numerical study

Research output: Contribution to journalArticlepeer-review

25 Citations (Scopus)

Abstract

Time-dependent three-dimensional numerical simulation based on a large-eddy simulation approach is conducted to ascertain the complicated thermofluid dynamics of an argon radio-frequency (RF) inductively coupled plasma with a direct-current (dc) plasma jet assistance, considering non-uniform densities and properties in time and space as well as turbulence generation and suppression. Using a combination of numerical schemes suitable to capture vortices, the present simulation successfully shows unsteady behaviour of the plasma as well as wave-like interfaces between a high-temperature flow and a low-temperature flow as a result of the balance of fluid-dynamical instability and a viscous diffusion effect. Small cold vortices generated near a dc jet injector are entrained into and merged with vortices generated around the dc jet. Subsequently, they interact with large vortices in an RF induction coil region, which causes a much more complex vortex structure.

Original languageEnglish
Article number015401
JournalJournal of Physics D: Applied Physics
Volume46
Issue number1
DOIs
Publication statusPublished - 2013 Jan 9

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics
  • Acoustics and Ultrasonics
  • Surfaces, Coatings and Films

Fingerprint

Dive into the research topics of 'Three-dimensional flow dynamics of an argon RF plasma with dc jet assistance: A numerical study'. Together they form a unique fingerprint.

Cite this