Abstract
We report three-dimensional bicontinuous nanoporous Au/polyaniline (PANI) composite films made by one-step electrochemical polymerization of PANI shell onto dealloyed nanoporous gold (NPG) skeletons for the applications in electrochemical supercapacitors. The NPG/PANI based supercapacitors exhibit ultrahigh volumetric capacitance (∼1500 F cm-3) and energy density (∼0.078 Wh cm-3), which are seven and four orders of magnitude higher than these of electrolytic capacitors, with the same power density up to ∼190 W cm-3. The outstanding capacitive performances result from a novel nanoarchitecture in which pseudocapacitive PANI shells are incorporated into pore channels of highly conductive NPG, making them promising candidates as electrode materials in supercapacitor devices combing high-energy storage densities with high-power delivery.
Original language | English |
---|---|
Pages (from-to) | 325-329 |
Number of pages | 5 |
Journal | Journal of Power Sources |
Volume | 197 |
DOIs | |
Publication status | Published - 2012 Jan 1 |
Keywords
- Capacitors
- Hybrid materials
- Nanoporous metal
- Polyaniline
- Supercapacitors
ASJC Scopus subject areas
- Renewable Energy, Sustainability and the Environment
- Energy Engineering and Power Technology
- Physical and Theoretical Chemistry
- Electrical and Electronic Engineering