Three- and four-body structure of light Λ hypernuclei

E. Hiyama, M. Kamimura, T. Motoba, T. Yamada, Y. Yamamoto

Research output: Contribution to journalArticlepeer-review

3 Citations (Scopus)

Abstract

On the basis of the three- and four-body structure calculations of 4ΛH, 4ΛHe, 9ΛBe, 13ΛC and 7ΛLi, it is emphasized what is interesting and important from view points of hypernuclear physics and few-body physics. By performing four-body calculation with both 3N + Λ and 3N + Σ channels with realistic NN and YN interactions, we show that the Σ-channel component plays an important role in making 4ΛH and 4ΛHe bound. In the microscopic 2α + Λ (3α + Λ) model for 9ΛBe (13ΛC), we predict the spin-orbit splittings of 5/2+1 - 3/2+1 in 9ΛBe and 3/2-1 - 1/2-1 in 13ΛC to be 0.08 - 0.16 MeV and 0.39 - 0.78 MeV, respectively, with the use of OBE-model NSC97a ∼ f. On the other hand quark-model ΛN spin-orbit force gives rise to half of the splittings of the smallest OBE-model prediction. On the basis of 7ΛLi = 5Λ He + N + N three-body model, it is suggested that a measurement of the 5/2+1 → 1/2+1 Ε2 transition rate in 7ΛLi provides a unique opportunity to derive the hypernuclear size for the first time and hence to confirm the size contraction experimentally.

Original languageEnglish
Pages (from-to)107-113
Number of pages7
JournalNuclear Physics A
Volume691
Issue number1-2
DOIs
Publication statusPublished - 2001 Aug 13
Externally publishedYes

ASJC Scopus subject areas

  • Nuclear and High Energy Physics

Fingerprint

Dive into the research topics of 'Three- and four-body structure of light Λ hypernuclei'. Together they form a unique fingerprint.

Cite this