Thiosulfate-dependent chemolithoautotrophic growth of Bradyrhizobium japonicum

Sachiko Masuda, Shima Eda, Seishi Ikeda, Hisayuki Mitsui, Kiwamu Minamisawa

    Research output: Contribution to journalArticlepeer-review

    32 Citations (Scopus)

    Abstract

    Thiosulfate-oxidizing sox gene homologues were found at four loci (I, II, III IV) on the genome of Bradyrhizobium japonicum USDA110, a symbiotic nitrogen-fixing bacterium in soil. In fact, B. japonicum USDA110 can oxidize thiosulfate and grow under a chemolithotrophic condition. The deletion mutation of the SoxY1 gene at the sox locus I, homologous to the sulfur-oxidizing (Sox) system in Alphaproteobacteria, left B. japonicum unable to oxidize thiosulfate and grow under chemolithotrophic conditions, whereas the deletion mutation of the soxY2 gene at sox locus II, homologous to the Sox system in green sulfur bacteria, produced phenotypes similar to those of wild-type USDA110. Thiosulfate-dependent O2 respiration was observed only in USDA110 and the soxY2 mutant and not in the SoxY1 mutant. In the cells, 1 mol of thiosulfate was stoichiometrically converted to approximately 2 mol of sulfate and consumed approximately 2 mol of O 2. B. japonicum USDA110 showed 14CO2 fixation under chemolithotrophic growth conditions. The CO2 fixation of resting cells was significantly dependent on thiosulfate addition. These results show that USDA110 is able to grow chemolithoautotrophically using thiosulfate as an electron donor, oxygen as an electron acceptor, and carbon dioxide as a carbon source, which likely depends on sox locus I including the SoxY 1 gene on USDA110 genome. Thiosulfate oxidation capability is frequently found in members of the Bradyrhizobiaceae, which phylogenetic analysis showed to be associated with the presence of sox locus I homologues, including the SoxY1 gene of B. japonicum USDA110.

    Original languageEnglish
    Pages (from-to)2402-2409
    Number of pages8
    JournalApplied and environmental microbiology
    Volume76
    Issue number8
    DOIs
    Publication statusPublished - 2010 Apr

    ASJC Scopus subject areas

    • Biotechnology
    • Food Science
    • Applied Microbiology and Biotechnology
    • Ecology

    Fingerprint Dive into the research topics of 'Thiosulfate-dependent chemolithoautotrophic growth of Bradyrhizobium japonicum'. Together they form a unique fingerprint.

    Cite this