Abstract
In polar crystals, cooperative ionic displacement produces a macroscopic spontaneous polarization. Among such polar materials, LiNbO 3 -type wide bandgap oxides are particularly appealing because they offer useful ferroelectric properties and also potentially lead to multiferroic materials. Using molecular-beam epitaxy, we investigated the thin-film growth of high-pressure phase LiNbO 3 -type ZnSnO 3 and discovered a polar oxide candidate, MgSnO 3 . We found that LiNbO 3 -type substrates play an essential role in the crystallization of these compounds, though corundum-type Al 2 O 3 substrates also have the identical crystallographic arrangement of oxygen sublattice. Optical transmittance and electrical transport measurements revealed their potential as a transparent conducting oxide. Establishment of a thin-film synthetic route would be the basis for exploration of functional polar oxides and research on conduction at ferroelectric interfaces and domain walls.
Original language | English |
---|---|
Article number | 022505 |
Journal | APL Materials |
Volume | 7 |
Issue number | 2 |
DOIs | |
Publication status | Published - 2019 Feb 1 |
ASJC Scopus subject areas
- Materials Science(all)
- Engineering(all)