Thermal treatment of PtNiCo electrocatalysts: Effects of nanoscale strain and structure on the activity and stability for the oxygen reduction reaction

Bridgid N. Wanjala, Rameshwori Loukrakpam, Jin Luo, Peter N. Njoki, Derrick Mott, Chuan Jian Zhong, Minhua Shao, Lesia Protsailo, Tetsuo Kawamura

Research output: Contribution to journalArticlepeer-review

92 Citations (Scopus)


The ability to control the nanoscale size, composition, phase, and facet of multimetallic catalysts is important for advancing the design and preparation of advanced catalysts. This report describes the results of an investigation of the thermal treatment temperature on nanoengineered platinum-nickel-cobalt catalysts for oxygen reduction reaction, focusing on understanding the effects of lattice strain and surface properties on activity and stability. The thermal treatment temperatures ranged from 400 to 926 °C. The catalysts were characterized by microscopic, spectroscopic, and electrochemical techniques for establishing the correlation between the electrocatalytic properties and the catalyst structures. The composition, size, and phase properties of the trimetallic nanoparticles were controllable by our synthesis and processing approach. The increase in the thermal treatment temperature of the carbon-supported catalysts was shown to lead to a gradual shrinkage of the lattice constants of the alloys and an enhanced population of facets on the nanoparticle catalysts. A combination of the lattice shrinkage and the surface enrichment of nanocrystal facets on the nanoparticle catalysts as a result of the increased temperature was shown to play a major role in enhancing the electrocatalytic activity for catalysts. Detailed analyses of the oxidation states, atomic distributions, and interatomic distances revealed a certain degree of changes in Co enrichment and surface Co oxides as a function of the thermal treatment temperature. These findings provided important insights into the correlation between the electrocatalytic activity/stability and the nanostructural parameters (lattice strain, surface oxidation state, and distribution) of the nanoengineered trimetallic catalysts.

Original languageEnglish
Pages (from-to)17580-17590
Number of pages11
JournalJournal of Physical Chemistry C
Issue number41
Publication statusPublished - 2010 Oct 21
Externally publishedYes

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Energy(all)
  • Physical and Theoretical Chemistry
  • Surfaces, Coatings and Films


Dive into the research topics of 'Thermal treatment of PtNiCo electrocatalysts: Effects of nanoscale strain and structure on the activity and stability for the oxygen reduction reaction'. Together they form a unique fingerprint.

Cite this