TY - JOUR
T1 - Theoretical strength and rubber-like behaviour in micro-sized pyrolytic carbon
AU - Zhang, Xuan
AU - Zhong, Lei
AU - Mateos, Arturo
AU - Kudo, Akira
AU - Vyatskikh, Andrey
AU - Gao, Huajian
AU - Greer, Julia R.
AU - Li, Xiaoyan
N1 - Funding Information:
X.L. acknowledges financial support from the National Natural Science Foundation of China (grants 11522218 and 11720101002) and the National Basic Research of China (grant 2015CB932500). H.G. acknowledges funding from the National Science Foundation (grant DMR-1709318). J.R.G. acknowledges financial support by the US Department of Energy, Office of Basic Energy Sciences (DOE-BES) under grant DE-SC0006599. A.V. acknowledges the financial support of the Resnick Sustainability Institute at Caltech. The authors thank G. R. Rossman for assistance with Raman spectroscopy measurements, J. Yao for help with SIMS measurements and K. Narita for assistance with density measurements of pyrolytic carbon.
Publisher Copyright:
© 2019, The Author(s), under exclusive licence to Springer Nature Limited.
PY - 2019/8/1
Y1 - 2019/8/1
N2 - The creation of materials with a combination of high strength, substantial deformability and ductility, large elastic limit and low density represents a long-standing challenge, because these properties are, in general, mutually exclusive. Using a combination of two-photon lithography and high-temperature pyrolysis, we have created micro-sized pyrolytic carbon with a tensile strength of 1.60 ± 0.55 GPa, a compressive strength approaching the theoretical limit of ~13.7 GPa, a substantial elastic limit of 20–30% and a low density of ~1.4 g cm−3. This corresponds to a specific compressive strength of 9.79 GPa cm3 g−1, a value that surpasses that of nearly all existing structural materials. Pillars with diameters below 2.3 μm exhibit rubber-like behaviour and sustain a compressive strain of ~50% without catastrophic failure; larger ones exhibit brittle fracture at a strain of ~20%. Large-scale atomistic simulations reveal that this combination of beneficial mechanical properties is enabled by the local deformation of 1 nm curled graphene fragments within the pyrolytic carbon microstructure, the interactions among neighbouring fragments and the presence of covalent carbon–carbon bonds.
AB - The creation of materials with a combination of high strength, substantial deformability and ductility, large elastic limit and low density represents a long-standing challenge, because these properties are, in general, mutually exclusive. Using a combination of two-photon lithography and high-temperature pyrolysis, we have created micro-sized pyrolytic carbon with a tensile strength of 1.60 ± 0.55 GPa, a compressive strength approaching the theoretical limit of ~13.7 GPa, a substantial elastic limit of 20–30% and a low density of ~1.4 g cm−3. This corresponds to a specific compressive strength of 9.79 GPa cm3 g−1, a value that surpasses that of nearly all existing structural materials. Pillars with diameters below 2.3 μm exhibit rubber-like behaviour and sustain a compressive strain of ~50% without catastrophic failure; larger ones exhibit brittle fracture at a strain of ~20%. Large-scale atomistic simulations reveal that this combination of beneficial mechanical properties is enabled by the local deformation of 1 nm curled graphene fragments within the pyrolytic carbon microstructure, the interactions among neighbouring fragments and the presence of covalent carbon–carbon bonds.
UR - http://www.scopus.com/inward/record.url?scp=85068927186&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85068927186&partnerID=8YFLogxK
U2 - 10.1038/s41565-019-0486-y
DO - 10.1038/s41565-019-0486-y
M3 - Article
C2 - 31285610
AN - SCOPUS:85068927186
SN - 1748-3387
VL - 14
SP - 762
EP - 769
JO - Nature Nanotechnology
JF - Nature Nanotechnology
IS - 8
ER -