The reactions between iron and magnesite at 6 GPa and 1273-1873 K: Implication to reduction of subducted carbonate in the deep mantle

Naira S. Martirosyan, Konstantin D. Litasov, Anton Shatskiy, Eiji Ohtani

Research output: Contribution to journalArticle

11 Citations (Scopus)

Abstract

The interaction between Fe-metal and magnesite was studied in multianvil experiments at 6 GPa and 1273-1873 K using different capsule materials: Fe, BN, and MgO. It was observed that at subsolidus conditions reaction proceeds with the formation of Fe3C and magnesiowüstite in the stoichiometric proportions according to relation: MgCO3 + 5Fe = 3(Fe0.66Mg0.33)O + Fe3C. At melting conditions (1673-1873 K) magnesite and iron react in nearly equivalent molar proportions with formation of Mg-Fe-carbonatite melt, Fe-C alloy, magnesiowüstite and graphite. The reactions clearly show that free carbon and metallic iron phases cannot coexist in the upper mantle and presumably in transition zone and will always form Fe-carbide. The carbon content in Fe-C alloy and its coexistence with diamond will be strongly dependent on the oxygen fugacity. The studied reactions can be considered as intermediate processes in the reduced mantle domains at the contact with submerging subduction slabs and have further implication to the processes at the core-mantle boundary.

Original languageEnglish
Pages (from-to)49-59
Number of pages11
JournalJournal of Mineralogical and Petrological Sciences
Volume110
Issue number2
DOIs
Publication statusPublished - 2015

Keywords

  • Carbonate
  • High-pressure experiment
  • Iron
  • Mantle
  • Subduction

ASJC Scopus subject areas

  • Geophysics
  • Geology

Fingerprint Dive into the research topics of 'The reactions between iron and magnesite at 6 GPa and 1273-1873 K: Implication to reduction of subducted carbonate in the deep mantle'. Together they form a unique fingerprint.

  • Cite this