The primodial terrestrial magma ocean and its implication for stratification of the mantle

Eiji Ohtani

Research output: Contribution to journalArticlepeer-review

99 Citations (Scopus)

Abstract

Fractional crystallization behaviour of a magma ocean extending to lower mantle depths was deduced from estimations of melting relations for the deep mantle and the density relationships between ultrabasic liquid and mantle minerals. The accretional growth of the Earth necessarily involves a molten zone (magma ocean) in the outer layer of the growing Earth. The fractionation by melting during accretion results in primary stratification composed of a molten ultrabasic upper mantle (magma ocean), a perovskite-rich lower mantle, and an iron core. A certain amount of Al2O3 and CaO was removed from the magma ocean and retained in the lower mantle due to eclogite fractionation in the early stage of accretion and the perovskite fractionation in the later stage of accretion. Models of the stratification of the upper mantle arising from fractional crystallization of the magma ocean and subsequent convective disturbance were deduced on the basis of estimations of melting relations for the deep mantle and the density relationships between the ultrabasic liquid and mantle minerals. The stratification of the mantle, which is consistent with geophysical constraints is as follows; the upper mantle is composed of two layers, the upper olivine-rich layer and the lower garnet-rich layer with a thickness around 200 km, and the lower mantle with a perovskite-rich composition. In this model, both the 400 and 650 km discontinuities are the chemical boundaries.

Original languageEnglish
Pages (from-to)70-80
Number of pages11
JournalPhysics of the Earth and Planetary Interiors
Volume38
Issue number1
DOIs
Publication statusPublished - 1985 Mar 30

ASJC Scopus subject areas

  • Astronomy and Astrophysics
  • Geophysics
  • Physics and Astronomy (miscellaneous)
  • Space and Planetary Science

Fingerprint Dive into the research topics of 'The primodial terrestrial magma ocean and its implication for stratification of the mantle'. Together they form a unique fingerprint.

Cite this