TY - JOUR
T1 - The organogermanium compound THGP suppresses melanin synthesis via complex formation with L-DOPA on mushroom tyrosinase and in B16 4A5 melanoma cells
AU - Azumi, Junya
AU - Takeda, Tomoya
AU - Shimada, Yasuhiro
AU - Aso, Hisashi
AU - Nakamura, Takashi
N1 - Publisher Copyright:
© 2019 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2019/10/1
Y1 - 2019/10/1
N2 - The organogermanium compound 3-(trihydroxygermyl)propanoic acid (THGP) has various biological activities. We previously reported that THGP forms a complex with cis-diol structures. L-3,4-Dihydroxyphenylalanine (L-DOPA), a precursor of melanin, contains a cis-diol structure in its catechol skeleton, and excessive melanin production causes skin darkening and staining. Thus, the cosmetic field is investigating substances that suppress melanin production. In this study, we investigated whether THGP inhibits melanin synthesis via the formation of a complex with L-DOPA using mushroom tyrosinase and B16 4A5 melanoma cells. The ability of THGP to interact with L-DOPA was analyzed by 1H-NMR, and the influence of THGP and/or kojic acid on melanin synthesis was investigated. We also examined the effect of THGP on cytotoxicity, tyrosinase activity, and gene expression and found that THGP interacted with L-DOPA, a precursor of melanin with a cis-diol structure. The results also showed that THGP inhibited melanin synthesis, exerted a synergistic effect with kojic acid, and did not affect tyrosinase activity or gene expression. These results suggest that THGP is a useful substrate that functions as an inhibitor of melanogenesis and that its effect is enhanced by combination with kojic acid.
AB - The organogermanium compound 3-(trihydroxygermyl)propanoic acid (THGP) has various biological activities. We previously reported that THGP forms a complex with cis-diol structures. L-3,4-Dihydroxyphenylalanine (L-DOPA), a precursor of melanin, contains a cis-diol structure in its catechol skeleton, and excessive melanin production causes skin darkening and staining. Thus, the cosmetic field is investigating substances that suppress melanin production. In this study, we investigated whether THGP inhibits melanin synthesis via the formation of a complex with L-DOPA using mushroom tyrosinase and B16 4A5 melanoma cells. The ability of THGP to interact with L-DOPA was analyzed by 1H-NMR, and the influence of THGP and/or kojic acid on melanin synthesis was investigated. We also examined the effect of THGP on cytotoxicity, tyrosinase activity, and gene expression and found that THGP interacted with L-DOPA, a precursor of melanin with a cis-diol structure. The results also showed that THGP inhibited melanin synthesis, exerted a synergistic effect with kojic acid, and did not affect tyrosinase activity or gene expression. These results suggest that THGP is a useful substrate that functions as an inhibitor of melanogenesis and that its effect is enhanced by combination with kojic acid.
KW - Melanogenesis
KW - Organogermanium
KW - THGP
UR - http://www.scopus.com/inward/record.url?scp=85072712202&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85072712202&partnerID=8YFLogxK
U2 - 10.3390/ijms20194785
DO - 10.3390/ijms20194785
M3 - Article
C2 - 31561511
AN - SCOPUS:85072712202
VL - 20
JO - International Journal of Molecular Sciences
JF - International Journal of Molecular Sciences
SN - 1422-0067
IS - 19
M1 - 4785
ER -