The mechanisms of hyphal pellet formation mediated by polysaccharides, α-1,3-glucan and galactosaminogalactan, in Aspergillus species

Ken Miyazawa, Akira Yoshimi, Akira Yoshimi, Keietsu Abe, Keietsu Abe, Keietsu Abe

Research output: Contribution to journalReview articlepeer-review

2 Citations (Scopus)

Abstract

Filamentous fungi are widely used for production of enzymes and chemicals, and are industrially cultivated both in liquid and solid cultures. Submerged culture is often used as liquid culture for filamentous fungi. In submerged culture, filamentous fungi show diverse macromorphology such as hyphal pellets and dispersed hyphae depending on culture conditions and genetic backgrounds of fungal strains. Although the macromorphology greatly affects the productivity of submerged cultures, the specific cellular components needed for hyphal aggregation after conidial germination have not been characterized. Recently we reported that the primary cell wall polysaccharide α-1,3-glucan and the extracellular polysaccharide galactosaminogalactan (GAG) contribute to hyphal aggregation in Aspergillus oryzae, and that a strain deficient in both α-1,3-glucan and GAG shows dispersed hyphae in liquid culture. In this review, we summarize our current understanding of the contribution of chemical properties of α-1,3-glucan and GAG to hyphal aggregation. Various ascomycetes and basidiomycetes have α-1,3-glucan synthase gene(s). In addition, some Pezizomycotina fungi, including species used in the fermentation industry, also have GAG biosynthetic genes. We also review here the known mechanisms of biosynthesis of α-1,3-glucan and GAG. Regulation of the biosynthesis of the two polysaccharides could be a potential way of controlling formation of hyphal pellets.

Original languageEnglish
Article number10
JournalFungal Biology and Biotechnology
Volume7
Issue number1
DOIs
Publication statusPublished - 2020 Jul 1

Keywords

  • Cell wall
  • Filamentous fungi
  • Galactosaminogalactan
  • Hyphal aggregation
  • α-1,3-Glucan

ASJC Scopus subject areas

  • Biotechnology
  • Ecology, Evolution, Behavior and Systematics
  • Applied Microbiology and Biotechnology
  • Molecular Biology
  • Cell Biology

Fingerprint

Dive into the research topics of 'The mechanisms of hyphal pellet formation mediated by polysaccharides, α-1,3-glucan and galactosaminogalactan, in Aspergillus species'. Together they form a unique fingerprint.

Cite this