The Large Subunit of Ribulose-1,5-Bisphosphate Carboxylase/Oxygenase is Fragmented into 37-kDa and 16-kDa Polypeptides by Active Oxygen in the Lysates of Chloroplasts from Primary Leaves of Wheat

Hiroyuki Ishida, Yoshito Nishimori, Miki Sugisawa, Amane Makino, Tadahiko Mae

Research output: Contribution to journalArticlepeer-review

128 Citations (Scopus)

Abstract

Lysates of chloroplasts isolated from wheat (Triticum aestivum L. cv. Aoba) leaves were incubated on ice (pH 5.7) for 0 to 60 min in light (15 μnol quanta m-2 s-1), and degradation of the large subunit (LSU) of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco: EC 4.1.1.39) was analyzed by applying immunoblotting with site-specific antibodies against the N-terminal, internal, and C-terminal amino acid sequences of the LSU of wheat Rubisco. The most dominant product of the breakdown of the LSU and that which was first to appear was an apparent molecular mass of 37-kDa fragment containing the N-terminal region of the LSU. A 16-kDa fragment containing the C-terminal region of the LSU was concomitantly seen. This fragmentation of the LSU was inhibited in the presence of EDTA or 1,10-phenanthroline. The addition of active oxygen scavengers, catalase (for H2O2) and n-propyl gallate (for hydroxyl radical) to the lysates also inhibited the fragmentation. When the purified Rubisco from wheat leaves was exposed to a hydroxyl radical-generating system comprising H2O2, FeSO4 and ascorbic acid, the LSU was degraded in the same manner as observed in the chloroplast lysates. The results suggest that the large subunit of Rubisco was directly degraded to the 37-kDa fragment containing the N-terminal region and the 16-kDa fragment containing the C-terminal region of the LSU by active oxygen, probably the hydroxyl radical, generated in the lysates of chloroplasts.

Original languageEnglish
Pages (from-to)471-479
Number of pages9
JournalPlant and Cell Physiology
Volume38
Issue number4
DOIs
Publication statusPublished - 1997 Apr

Keywords

  • Active oxygen
  • Chloroplast
  • Protein degradation
  • Rubisco (EC 4.1.1.39)
  • Wheat (Triticum aestivum L.)

ASJC Scopus subject areas

  • Physiology
  • Plant Science
  • Cell Biology

Fingerprint Dive into the research topics of 'The Large Subunit of Ribulose-1,5-Bisphosphate Carboxylase/Oxygenase is Fragmented into 37-kDa and 16-kDa Polypeptides by Active Oxygen in the Lysates of Chloroplasts from Primary Leaves of Wheat'. Together they form a unique fingerprint.

Cite this