The jasmonate-responsive GTR1 transporter is required for gibberellin-mediated stamen development in Arabidopsis

Hikaru Saito, Takaya Oikawa, Shin Hamamoto, Yasuhiro Ishimaru, Miyu Kanamori-Sato, Yuko Sasaki-Sekimoto, Tomoya Utsumi, Jing Chen, Yuri Kanno, Shinji Masuda, Yuji Kamiya, Mitsunori Seo, Nobuyuki Uozumi, Minoru Ueda, Hiroyuki Ohta

Research output: Contribution to journalArticlepeer-review

76 Citations (Scopus)

Abstract

Plant hormones are transported across cell membranes during various physiological events. Recent identification of abscisic acid and strigolactone transporters suggests that transport of various plant hormones across membranes does not occur by simple diffusion but requires transporter proteins that are strictly regulated during development. Here, we report that a major glucosinolate transporter, GTR1/NPF2.10, is multifunctional and may be involved in hormone transport in Arabidopsis thaliana. When heterologously expressed in oocytes, GTR1 transports jasmonoyl-isoleucine and gibberellin in addition to glucosinolates. gtr1 mutants are severely impaired in filament elongation and anther dehiscence resulting in reduced fertility, but these phenotypes can be rescued by gibberellin treatment. These results suggest that GTR1 may be a multifunctional transporter for the structurally distinct compounds glucosinolates, jasmonoyl-isoleucine and gibberellin, and may positively regulate stamen development by mediating gibberellin supply.

Original languageEnglish
Article number6095
JournalNature communications
Volume6
DOIs
Publication statusPublished - 2015 Feb 4

ASJC Scopus subject areas

  • Chemistry(all)
  • Biochemistry, Genetics and Molecular Biology(all)
  • Physics and Astronomy(all)

Fingerprint Dive into the research topics of 'The jasmonate-responsive GTR1 transporter is required for gibberellin-mediated stamen development in Arabidopsis'. Together they form a unique fingerprint.

Cite this