The influence of trace impurities on the mechanical characteristics of a superplastic 2 mol% yttria stabilized zirconia

J. A. Hines, Y. Ikuhara, A. H. Chokshi, T. Sakuma

    Research output: Contribution to journalArticlepeer-review

    74 Citations (Scopus)

    Abstract

    In contrast to metallic alloys, the mechanical characteristics of superplastic ceramics are very sensitive to minor changes in levels of trace impurities. In the present study, the mechanical behavior of a 2 mol% yttria stabilized tetragonal zirconia was studied in tension and compression in two batches of material, with small variations in levels of trace impurities, to examine the influence of stress axis and impurity content on the deformation behavior. The mechanical properties of the material were characterized in terms of the expression: ε̇ ∝ σn where ε̇ is the strain rate, σ is the stress and n is termed the stress exponent. The mechanical behavior of the ceramic was identical in tension and compression, for a material with a given level of impurity. The high purity specimens exhibited a transition from a stress exponent of ∼3 to ∼2 with an increase in stress, whereas the low purity material displayed only n ∼ 2 behavior over the entire stress range studied. Detailed high resolution and analytical electron microscopy studies revealed that there was no amorphous phase at interfaces in both batches of material; however, segregation of Al at interfaces was detected only in the low purity material. The observed transition in stress exponents can be rationalized in terms of two sequential mechanisms: grain boundary sliding with n ∼ 2 and interface reaction controlled grain boundary sliding with n ∼ 3. The transition from n ∼ 3 to ∼2 occurred at lower stresses with an increase in the grain size and a decrease in the purity level. Acta Metallurgica Inc. Published by Elsevier Science Ltd.

    Original languageEnglish
    Pages (from-to)5557-5568
    Number of pages12
    JournalActa Materialia
    Volume46
    Issue number15
    DOIs
    Publication statusPublished - 1998 Sep 18

    ASJC Scopus subject areas

    • Electronic, Optical and Magnetic Materials
    • Ceramics and Composites
    • Polymers and Plastics
    • Metals and Alloys

    Fingerprint Dive into the research topics of 'The influence of trace impurities on the mechanical characteristics of a superplastic 2 mol% yttria stabilized zirconia'. Together they form a unique fingerprint.

    Cite this