The effect of interstitial-site nitrogen on structural, elastic, and magnetic properties of face-center cubic Co

Binbin Wu, Feng Zhang, Qiwei Hu, Qiqi Tang, Shan Liu, Xiaojun Xiang, Yuanhua Xia, Leiming Fang, Hiroaki Ohfuji, Tetsuo Irifune, Li Lei

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)

Abstract

Cobalt plays a crucial role in the systematic understanding of magnetic phenomena originating from 3d transition metals. Particularly, recent studies of Co systems doped with nitrogen (Co-N) have attracted a lot of attention for applications in spintronics and high-density magnetic data-storage devices. In this work, in order to understand the effect of interstitial incorporation of N atoms into a face-center cubic (fcc) Co lattice, we have studied the structure, elastic, and magnetic properties of spherical-like bulk CoNx (x = 0.06-0.07) samples. These samples were synthesized through a high-pressure solid-state metathesis reaction. We demonstrate that the use of a certain concentration of interstitial N atoms tends to stabilize the lattice of fcc Co at ambient conditions. Such a stabilizing effect is found to originate from the covalent bond between Co atoms and N atoms. High-pressure synchrotron x-ray diffraction indicates that the incorporation of N atoms into fcc Co has little effect on the elastic property up to 27.2 GPa with a bulk modulus (B0) of 200 GPa; the latter is found to be comparable to that of fcc and hcp Co. CoNx samples exhibited ferromagnetic behavior with saturation magnetization up to 153.55 emu/g and coercivity of 16.25 Oe. The introduction of small amounts of nitrogen in the cobalt matrix was found to induce a significant decrease in the coercive force parameter.

Original languageEnglish
Article number105901
JournalJournal of Applied Physics
Volume129
Issue number10
DOIs
Publication statusPublished - 2021 Mar 14
Externally publishedYes

ASJC Scopus subject areas

  • Physics and Astronomy(all)

Fingerprint

Dive into the research topics of 'The effect of interstitial-site nitrogen on structural, elastic, and magnetic properties of face-center cubic Co'. Together they form a unique fingerprint.

Cite this