TY - JOUR
T1 - The DDF1 transcriptional activator upregulates expression of a gibberellin-deactivating gene, GA2ox7, under high-salinity stress in Arabidopsis
AU - Magome, Hiroshi
AU - Yamaguchi, Shinjiro
AU - Hanada, Atsushi
AU - Kamiya, Yuji
AU - Oda, Kenji
PY - 2008/11
Y1 - 2008/11
N2 - High-salinity stress affects plant growth and development. We have previously reported that overexpression of the salinity-responsive DWARF AND DELAYED FLOWERING 1 (DDF1) gene, encoding an AP2 transcription factor of the DREB1/CBF subfamily, causes dwarfism mainly by levels of reducing bioactive gibberellin (GA) in transgenic Arabidopsis. Here, we found that the GA 2-oxidase 7 gene (GA2ox7), which encodes a C20-GA deactivation enzyme, is strongly upregulated in DDF1-overexpressing transgenic plants. A loss-of-function mutation of GA2ox7 (ga2ox7-2) suppressed the dwarf phenotype of DDF1-overexpressing plants, indicating that their GA deficiency is due to overexpression of GA2ox7. Transient overexpression of DDF1 activated the promoter of GA2ox7 in Arabidopsis leaves. A gel shift assay showed that DDF1 binds DRE-like motifs (GCCGAC and ATCGAC) in the GA2ox7 promoter. In Arabidopsis under high-salinity stress, six GA2ox genes, including GA2ox7, were upregulated. Furthermore, the ga2ox7-2 mutant was less growth retarded than wild-type Col under high-salinity stress. These results demonstrate that, under salinity stress, Arabidopsis plants actively reduce endogenous GA levels via the induction of GA 2-oxidase, with the result that growth is repressed for stress adaptation.
AB - High-salinity stress affects plant growth and development. We have previously reported that overexpression of the salinity-responsive DWARF AND DELAYED FLOWERING 1 (DDF1) gene, encoding an AP2 transcription factor of the DREB1/CBF subfamily, causes dwarfism mainly by levels of reducing bioactive gibberellin (GA) in transgenic Arabidopsis. Here, we found that the GA 2-oxidase 7 gene (GA2ox7), which encodes a C20-GA deactivation enzyme, is strongly upregulated in DDF1-overexpressing transgenic plants. A loss-of-function mutation of GA2ox7 (ga2ox7-2) suppressed the dwarf phenotype of DDF1-overexpressing plants, indicating that their GA deficiency is due to overexpression of GA2ox7. Transient overexpression of DDF1 activated the promoter of GA2ox7 in Arabidopsis leaves. A gel shift assay showed that DDF1 binds DRE-like motifs (GCCGAC and ATCGAC) in the GA2ox7 promoter. In Arabidopsis under high-salinity stress, six GA2ox genes, including GA2ox7, were upregulated. Furthermore, the ga2ox7-2 mutant was less growth retarded than wild-type Col under high-salinity stress. These results demonstrate that, under salinity stress, Arabidopsis plants actively reduce endogenous GA levels via the induction of GA 2-oxidase, with the result that growth is repressed for stress adaptation.
KW - DREB1/CBF subfamily
KW - DWARF and Delayed Flowering 1
KW - Dwarfism
KW - Gibberellin 2-oxidase
KW - High-salinity stress
UR - http://www.scopus.com/inward/record.url?scp=58149214313&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=58149214313&partnerID=8YFLogxK
U2 - 10.1111/j.1365-313X.2008.03627.x
DO - 10.1111/j.1365-313X.2008.03627.x
M3 - Article
C2 - 18643985
AN - SCOPUS:58149214313
VL - 56
SP - 613
EP - 626
JO - Plant Journal
JF - Plant Journal
SN - 0960-7412
IS - 4
ER -