The C2H2-type transcription factor, FlbC, is involved in the transcriptional regulation of Aspergillus oryzae glucoamylase and protease genes specifically expressed in solid-state culture

Mizuki Tanaka, Midori Yoshimura, Masahiro Ogawa, Yasuji Koyama, Takahiro Shintani, Katsuya Gomi

    Research output: Contribution to journalArticlepeer-review

    15 Citations (Scopus)

    Abstract

    Aspergillus oryzae produces a large amount of secreted proteins in solid-state culture, and some proteins such as glucoamylase (GlaB) and acid protease (PepA) are specifically produced in solid-state culture, but rarely in submerged culture. From the disruption mutant library of A. oryzae transcriptional regulators, we successfully identified a disruption mutant showing an extremely low production level of GlaB but a normal level of α-amylase production. This strain was a disruption mutant of the C2H2-type transcription factor, FlbC, which is reported to be involved in the regulation of conidiospore development. Disruption mutants of other upstream regulators comprising a conidiation regulatory network had no apparent effect on GlaB production in solid-state culture. In addition to GlaB, the production of acid protease in solid-state culture was also markedly decreased by flbC disruption. Northern blot analyses revealed that transcripts of glaB and pepA were significantly decreased in the flbC disruption strain. These results suggested that FlbC is involved in the transcriptional regulation of genes specifically expressed under solid-state cultivation conditions, possibly independent of the conidiation regulatory network.

    Original languageEnglish
    Pages (from-to)5859-5868
    Number of pages10
    JournalApplied Microbiology and Biotechnology
    Volume100
    Issue number13
    DOIs
    Publication statusPublished - 2016 Jul 1

    Keywords

    • Acid protease
    • Aspergillus oryzae
    • Conidiospore development
    • Gene expression regulation
    • Glucoamylase
    • Solid-state culture
    • Transcription factor FlbC

    ASJC Scopus subject areas

    • Biotechnology
    • Applied Microbiology and Biotechnology

    Fingerprint

    Dive into the research topics of 'The C2H2-type transcription factor, FlbC, is involved in the transcriptional regulation of Aspergillus oryzae glucoamylase and protease genes specifically expressed in solid-state culture'. Together they form a unique fingerprint.

    Cite this