Abstract
Protein N-myristoylation plays key roles in various cellular functions in eukaryotic organisms. To clarify the relationship between the efficiency of protein N-myristoylation and the amino acid sequence of the substrate in plants, we have applied a wheat germ cell-free translation system with high protein productivity to examine the N-myristoylation of various wild-type and mutant forms of Arabidopsis thaliana proteins. Evaluation of the relationship between removal of the initiating Met and subsequent N-myristoylation revealed that constructs containing Pro at position 3 do not undergo N-myristoylation, primarily because of an inhibitory effect of this amino acid on elimination of the initiating Met by methionyl aminopeptidase. Our analysis of the consensus sequence for N-myristoylation in plants focused on the variability of amino acids at positions 3, 6 and 7 of the motif. We found that not only Ser at position 6 but also Lys at position 7 affects the selectivity for the amino acid at position 3. The results of our analyses allowed us to identify several A. thaliana proteins as substrates for N-myristoylation that had previously been predicted not to be candidates for such modification with a prediction program. We have thus shown that a wheat germ cell-free system is a useful tool for plant N-myristoylome analysis. This in vitro approach will facilitate comprehensive determination of N-myristoylated proteins in plants.
Original language | English |
---|---|
Pages (from-to) | 3596-3607 |
Number of pages | 12 |
Journal | FEBS Journal |
Volume | 277 |
Issue number | 17 |
DOIs | |
Publication status | Published - 2010 Sept |
Keywords
- N-myristoyltransferase
- cell-free translation
- myristoylation
- plant
- wheat germ
ASJC Scopus subject areas
- Biochemistry
- Molecular Biology
- Cell Biology