TY - JOUR
T1 - The Cauchy problem for the Finsler heat equation
AU - Akagi, Goro
AU - Ishige, Kazuhiro
AU - Sato, Ryuichi
N1 - Publisher Copyright:
© 2020 Walter de Gruyter GmbH, Berlin/Boston 2020.
PY - 2020/7/1
Y1 - 2020/7/1
N2 - Let H be a norm of ℝ N {\mathbb{R}^{N}} and H 0 {H_{0}} the dual norm of H. Denote by Δ H {\Delta_{H}} the Finsler-Laplace operator defined by Δ H u:= div (H (∇ u) ∇ ζ H (∇ u)) {\Delta_{H}u:=\operatorname{div}(H(\nabla u)\nabla-{\xi}H(\nabla u))}. In this paper we prove that the Finsler-Laplace operator Δ H {\Delta_{H}} acts as a linear operator to H 0 {H-{0}} -radially symmetric smooth functions. Furthermore, we obtain an optimal sufficient condition for the existence of the solution to the Cauchy problem for the Finsler heat equation ∂ t u = Δ H u, x ∈ ℝ N, t > 0, \partial-{t}u=\Delta-{H}u,\quad x\in\mathbb{R}^{N},\,t>0, where N ≥ 1 {N\geq 1} and ∂ t:= ∂ ∂ t {\partial-{t}:=\frac{\partial}{\partial t}}.
AB - Let H be a norm of ℝ N {\mathbb{R}^{N}} and H 0 {H_{0}} the dual norm of H. Denote by Δ H {\Delta_{H}} the Finsler-Laplace operator defined by Δ H u:= div (H (∇ u) ∇ ζ H (∇ u)) {\Delta_{H}u:=\operatorname{div}(H(\nabla u)\nabla-{\xi}H(\nabla u))}. In this paper we prove that the Finsler-Laplace operator Δ H {\Delta_{H}} acts as a linear operator to H 0 {H-{0}} -radially symmetric smooth functions. Furthermore, we obtain an optimal sufficient condition for the existence of the solution to the Cauchy problem for the Finsler heat equation ∂ t u = Δ H u, x ∈ ℝ N, t > 0, \partial-{t}u=\Delta-{H}u,\quad x\in\mathbb{R}^{N},\,t>0, where N ≥ 1 {N\geq 1} and ∂ t:= ∂ ∂ t {\partial-{t}:=\frac{\partial}{\partial t}}.
KW - Cauchy problem
KW - Finsler heat equation
KW - linearity
UR - http://www.scopus.com/inward/record.url?scp=85043758584&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85043758584&partnerID=8YFLogxK
U2 - 10.1515/acv-2017-0048
DO - 10.1515/acv-2017-0048
M3 - Article
AN - SCOPUS:85043758584
VL - 13
SP - 257
EP - 278
JO - Advances in Calculus of Variations
JF - Advances in Calculus of Variations
SN - 1864-8258
IS - 3
ER -