TY - JOUR
T1 - Ternary 3D architectures of CdS QDs/graphene/ZnIn2S4 heterostructures for efficient photocatalytic H2 production
AU - Hou, Jungang
AU - Yang, Chao
AU - Cheng, Huijie
AU - Wang, Zheng
AU - Jiao, Shuqiang
AU - Zhu, Hongmin
PY - 2013/10/7
Y1 - 2013/10/7
N2 - Highly efficient hydrogen production can be achieved by three-dimensional (3D) architectures of CdS quantum dots (QDs) incorporated in the porous assembly of marigold-like ZnIn2S4 heterostructures coupled with graphene, leading to an efficient electron transfer between them and the enhancement of the ZnIn2S4 photostability. The as-prepared samples were characterized by X-ray diffraction, electron microscopy, Brunauer-Emmett-Teller analysis, X-ray photoelectron spectroscopy, UV-vis diffuse reflectance absorption spectra, and photoluminescence spectra. Especially, 3 wt% CdS QDs decorated ZnIn2S4 heteroarchitectures showed a high rate of H2-production at 1.9 mmol h-1, more 2.7 times than that of ZnIn2S4. The rate was further increased to 2.7 mmol h-1 with a high quantum efficiency of 56% using the 3 wt% CdS QDs decorated ZnIn2S 4 composites coupled with 1 wt% graphene (about 4 times higher than that of the pure ZnIn2S4). Moreover, the CdS QDs/graphene/ZnIn2S4 exhibited strong durability due to the high hydrothermal stability of the flower-like structure and the inhibition of CdS leaching owing to its strong interaction with ZnIn2S 4. The excellent photocatalytic performance is ascribed to the enhanced light absorption and the improved separation of photogenerated carriers. This finding highlights the validity of 3D semiconductor heterostructures as effective building blocks for exploring efficient visible-light-active photocatalysts. This journal is
AB - Highly efficient hydrogen production can be achieved by three-dimensional (3D) architectures of CdS quantum dots (QDs) incorporated in the porous assembly of marigold-like ZnIn2S4 heterostructures coupled with graphene, leading to an efficient electron transfer between them and the enhancement of the ZnIn2S4 photostability. The as-prepared samples were characterized by X-ray diffraction, electron microscopy, Brunauer-Emmett-Teller analysis, X-ray photoelectron spectroscopy, UV-vis diffuse reflectance absorption spectra, and photoluminescence spectra. Especially, 3 wt% CdS QDs decorated ZnIn2S4 heteroarchitectures showed a high rate of H2-production at 1.9 mmol h-1, more 2.7 times than that of ZnIn2S4. The rate was further increased to 2.7 mmol h-1 with a high quantum efficiency of 56% using the 3 wt% CdS QDs decorated ZnIn2S 4 composites coupled with 1 wt% graphene (about 4 times higher than that of the pure ZnIn2S4). Moreover, the CdS QDs/graphene/ZnIn2S4 exhibited strong durability due to the high hydrothermal stability of the flower-like structure and the inhibition of CdS leaching owing to its strong interaction with ZnIn2S 4. The excellent photocatalytic performance is ascribed to the enhanced light absorption and the improved separation of photogenerated carriers. This finding highlights the validity of 3D semiconductor heterostructures as effective building blocks for exploring efficient visible-light-active photocatalysts. This journal is
UR - http://www.scopus.com/inward/record.url?scp=84883251997&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84883251997&partnerID=8YFLogxK
U2 - 10.1039/c3cp51857d
DO - 10.1039/c3cp51857d
M3 - Article
C2 - 23942887
AN - SCOPUS:84883251997
SN - 1463-9076
VL - 15
SP - 15660
EP - 15668
JO - Physical Chemistry Chemical Physics
JF - Physical Chemistry Chemical Physics
IS - 37
ER -