Abstract
Ag-doped phosphate glasses containing Na and Al cations have been used in radiophotoluminescence (RPL) dosimeters. The formation mechanism of RPL center (Ag2+ and ) in Ag-doped phosphate glasses, containing various cations, has unresolved issues. Herein, we investigated the mechanism of the RPL center formation in Ag-doped phosphate glasses from the viewpoints of temperature dependence and activation energy of RPL center formation. We estimated the activation energies of RPL center formation in Ag-doped phosphate glasses containing Na and Al (Na-Al/Ag), Na and K (Na-K/Ag), and Al and K (Al-K/Ag) cations. The activation energy of formation did not increase with the first ionization energy of the cations contained in the glasses. This result suggests that electrons are trapped not at cations but at negative ion vacancies before forming Furthermore, the activation energy of formation increased with increasing mean molecular volume as the distance between the electron trapping site and increases. On the other hand, the activation energy of formation decreased with increasing mean molecular volume which is the opposite of the result of Consideration of temperature dependence of RPL intensity, the intensity of the RPL corresponding to in Al-K/Ag increased slightly at 300 K from that at 25 K. In addition, the concentration at 25 K in Al-K/Ag was approximately half of that at 300 K. These results indicate that only holes trapped at shallow trap sites transfer to in Al-K/Ag.
Original language | English |
---|---|
Article number | 062003 |
Journal | Japanese journal of applied physics |
Volume | 58 |
Issue number | 6 |
DOIs | |
Publication status | Published - 2019 |
ASJC Scopus subject areas
- Engineering(all)
- Physics and Astronomy(all)
Access to Document
Fingerprint Dive into the research topics of 'Temperature dependence of radiophotoluminescence in Ag-doped phosphate glasses containing different alkali metals'. Together they form a unique fingerprint.
Cite this
- APA
- Standard
- Harvard
- Vancouver
- Author
- BIBTEX
- RIS
Temperature dependence of radiophotoluminescence in Ag-doped phosphate glasses containing different alkali metals. / Kawamoto, Hiroki; Fujimoto, Yutaka; Koshimizu, Masanori; Okada, Go; Yanagida, Takayuki; Asai, Keisuke.
In: Japanese journal of applied physics, Vol. 58, No. 6, 062003, 2019.Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - Temperature dependence of radiophotoluminescence in Ag-doped phosphate glasses containing different alkali metals
AU - Kawamoto, Hiroki
AU - Fujimoto, Yutaka
AU - Koshimizu, Masanori
AU - Okada, Go
AU - Yanagida, Takayuki
AU - Asai, Keisuke
N1 - Funding Information: Hiroki Kawamoto Yutaka Fujimoto Masanori Koshimizu Go Okada Takayuki Yanagida Keisuke Asai Hiroki Kawamoto Yutaka Fujimoto Masanori Koshimizu Go Okada Takayuki Yanagida Keisuke Asai Department of Applied Chemistry, Graduate School of Engineering, Tohoku University, Sendai 980-8579, Japan Kanazawa Institute of Technology, Ohgigaoka, Nonoichi, Ishikawa 921-8501, Japan Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan Hiroki Kawamoto, Yutaka Fujimoto, Masanori Koshimizu, Go Okada, Takayuki Yanagida and Keisuke Asai 2019-06-01 2019-05-03 10:30:49 cgi/release: Article released bin/incoming: New from .zip The Ministry of Education, Culture, Sports, Science and Technology Grant-in Aid for Scientific Research (A) No. 18H03890 yes Ag-doped phosphate glasses containing Na and Al cations have been used in radiophotoluminescence (RPL) dosimeters. The formation mechanism of RPL center (Ag 2+ and ) in Ag-doped phosphate glasses, containing various cations, has unresolved issues. Herein, we investigated the mechanism of the RPL center formation in Ag-doped phosphate glasses from the viewpoints of temperature dependence and activation energy of RPL center formation. We estimated the activation energies of RPL center formation in Ag-doped phosphate glasses containing Na and Al (Na–Al/Ag), Na and K (Na–K/Ag), and Al and K (Al–K/Ag) cations. The activation energy of formation did not increase with the first ionization energy of the cations contained in the glasses. This result suggests that electrons are trapped not at cations but at negative ion vacancies before forming Furthermore, the activation energy of formation increased with increasing mean molecular volume as the distance between the electron trapping site and increases. On the other hand, the activation energy of formation decreased with increasing mean molecular volume which is the opposite of the result of Consideration of temperature dependence of RPL intensity, the intensity of the RPL corresponding to in Al–K/Ag increased slightly at 300�K from that at 25�K. In addition, the concentration at 25�K in Al–K/Ag was approximately half of that at 300�K. These results indicate that only holes trapped at shallow trap sites transfer to in Al–K/Ag. � 2019 The Japan Society of Applied Physics [1] Perry J. A. and Dosimetry R. P. L. 1987 Radiophotoluminescence in Health Physics (Bristol: Adam Hilger) p. 3 Perry J. A. and Dosimetry R. P. L. Radiophotoluminescence in Health Physics 1987 3 [2] Huang D. Y. C. and Hsu S. M. 2011 Advances in Center Therapy ed H. G. Muhtasib (Rijeka: InTech) p. 553 Huang D. Y. C. and Hsu S. M. ed Muhtasib H. G. Advances in Center Therapy 2011 553 [3] Martini M. and Meinardi F. 1997 Rivi. Nuovo Cimento 28 1 Martini M. and Meinardi F. Rivi. Nuovo Cimento 28 1997 1 [4] Furetta C. and Weng P. S. 1998 Operational Thermoluminescence Dosimetry (Singapore: World Scientific) p. 9 10.1142/3789 Furetta C. and Weng P. S. Operational Thermoluminescence Dosimetry 1998 9 [5] Botter-Jensen L., McKeever S. W. S. and Wintle A. G. 2003 Optically Stimulated Luminescence Dosimetry (Amsterdam: Elsevier) p. 1 Botter-Jensen L., McKeever S. W. S. and Wintle A. G. Optically Stimulated Luminescence Dosimetry 2003 1 [6] Patel N. P., Srinivas M., Verma V., Modi D. and Murthy K. V. R. 2016 Adv. Mater. Lett. 7 497 10.5185/amlett.2016.6160 Patel N. P., Srinivas M., Verma V., Modi D. and Murthy K. V. R. Adv. Mater. Lett. 7 2016 497 [7] Liu Y., Chen Z., Fan Y., Bs W., Lu W., Guo Q., Pan S., Chang A. and Tang X. 2008 Proc. Natl Acad. Sci. 18 1203 10.1016/j.pnsc.2008.04.002 Liu Y., Chen Z., Fan Y., Bs W., Lu W., Guo Q., Pan S., Chang A. and Tang X. Proc. Natl Acad. Sci. 0027-8424 18 2008 1203 [8] Nomura K., Ikegami T. and Juto N. 2002 Radioisotopes 51 85 [in Japanese] 10.3769/radioisotopes.51.85 Nomura K., Ikegami T. and Juto N. Radioisotopes 0033-8303 51 2002 85 [9] Koyama S. et al 2010 Sensor. Mater. 22 377 10.18494/SAM.2010.690 Koyama S. et al Sensor. Mater. 22 2010 377 [10] Ranogajec-Komor M. 2007 New Techniques for the Detection of Nuclear and Radioactive Agent (Berlin: Springer) pp. 97—111 Ranogajec-Komor M. New Techniques for the Detection of Nuclear and Radioactive Agent 2007 97 111 [11] Nanto H., Miyamoto Y., Oono T., Takei Y., Kurobori T. and Yamamoto T. 2011 Procedia Eng. 25 231 10.1016/j.proeng.2011.12.057 Nanto H., Miyamoto Y., Oono T., Takei Y., Kurobori T. and Yamamoto T. Procedia Eng. 25 2011 231 [12] Knezevic Z., Beck N., Milkovic D., Miljanic S. and Ranogajec-Komor M. 2011 Radiat. Meas. 46 1582 10.1016/j.radmeas.2011.05.042 Knezevic Z., Beck N., Milkovic D., Miljanic S. and Ranogajec-Komor M. Radiat. Meas. 1350-4487 46 2011 1582 [13] Kurobori T. and Nakamura S. 2012 Radiat. Meas. 47 1009 10.1016/j.radmeas.2012.09.003 Kurobori T. and Nakamura S. Radiat. Meas. 1350-4487 47 2012 1009 [14] Kurobori T., Takemura A., Miyamoto Y., Maki D., Koguchi Y., Takeuchi N., Yamamoto T. and Chen Y. Q. 2015 Radiat. Meas. 83 51 10.1016/j.radmeas.2015.04.017 Kurobori T., Takemura A., Miyamoto Y., Maki D., Koguchi Y., Takeuchi N., Yamamoto T. and Chen Y. Q. Radiat. Meas. 1350-4487 83 2015 51 [15] Kurobori T., Itoi H., Yanagida Y. and Chen Y. Q. 2015 Nucl. Instrum. Methods Phys. Res. A 793 6 10.1016/j.nima.2015.04.062 Kurobori T., Itoi H., Yanagida Y. and Chen Y. Q. Nucl. Instrum. Methods Phys. Res. 0168-9002 793 A 2015 6 [16] Kurobori T., Miyamoto Y., Maruyama Y., Yamamoto T. and Sasaki T. 2014 Nucl. Instrum. Methods Phys. Res. B 326 76 10.1016/j.nimb.2013.08.011 Kurobori T., Miyamoto Y., Maruyama Y., Yamamoto T. and Sasaki T. Nucl. Instrum. Methods Phys. Res. 0168-583X 326 B 2014 76 [17] Tanaka H., Fujimoto Y., Koshimizu M., Yanagida T., Yahaba T., Saeki K. and Asai K. 2016 Radiat. Meas. 94 73 10.1016/j.radmeas.2016.09.002 Tanaka H., Fujimoto Y., Koshimizu M., Yanagida T., Yahaba T., Saeki K. and Asai K. Radiat. Meas. 1350-4487 94 2016 73 [18] Etzel H. W. and Schulman J. H. 1954 J. Chem. Phys. 22 1549 10.1063/1.1740455 Etzel H. W. and Schulman J. H. J. Chem. Phys. 22 1954 1549 [19] Delbecq C. J., Hays W., O’Brien M. C. M. and Yuster P. H. 1963 Proc. R. Soc. A 271 19630016 10.1098/rspa.1963.0016 Delbecq C. J., Hays W., O’Brien M. C. M. and Yuster P. H. Proc. R. Soc. 0080-4630 271 A 19630016 1963 [20] Yokota R. and Imagawa H. 1966 J. Phys. Soc. Jpn. 23 1038 10.1143/JPSJ.23.1038 Yokota R. and Imagawa H. J. Phys. Soc. Jpn. 0031-9015 23 1966 1038 [21] Yokota R. and Imagawa H. 1965 J. Phys. Soc. Jpn. 20 1537 10.1143/JPSJ.20.1537 Yokota R. and Imagawa H. J. Phys. Soc. Jpn. 0031-9015 20 1965 1537 [22] Miyamoto Y., Yamamoto T., Kinoshita K., Koyama S., Takei Y., Nanto H., Shimotsuma Y., Sakakura M., Miura K. and Hirao K. 2010 Radiat. Meas. 45 546 10.1016/j.radmeas.2010.01.012 Miyamoto Y., Yamamoto T., Kinoshita K., Koyama S., Takei Y., Nanto H., Shimotsuma Y., Sakakura M., Miura K. and Hirao K. Radiat. Meas. 1350-4487 45 2010 546 [23] Miyamoto Y. et al 2011 Radiat. Meas. 46 1480 10.1016/j.radmeas.2011.05.048 Miyamoto Y. et al Radiat. Meas. 1350-4487 46 2011 1480 [24] Miyamoto Y., Kinoshita K., Koyama S., Nanto H., Yamamoto T., Sakakura M., Shimotsuma Y., Miura K. and Hirao K. 2010 Nucl. Instrum. Methods Phys. Res. A 619 71 10.1016/j.nima.2010.02.076 Miyamoto Y., Kinoshita K., Koyama S., Nanto H., Yamamoto T., Sakakura M., Shimotsuma Y., Miura K. and Hirao K. Nucl. Instrum. Methods Phys. Res. 0168-9002 619 A 2010 71 [25] Kawamoto H., Fujimoto Y., Koshimizu M., Okada G., Yanagida T. and Asai K. 2018 Jpn. J. App. Phys. 57 062401 10.7567/JJAP.57.062401 Kawamoto H., Fujimoto Y., Koshimizu M., Okada G., Yanagida T. and Asai K. Jpn. J. App. Phys. 1347-4065 57 6 062401 2018 [26] Tanaka H., Fujimoto Y., Saeki K., Koshimizu M., Yanagida T. and Asai K. 2017 Radiat. Meas. 106 180 10.1016/j.radmeas.2017.01.010 Tanaka H., Fujimoto Y., Saeki K., Koshimizu M., Yanagida T. and Asai K. Radiat. Meas. 1350-4487 106 2017 180 [27] Sato F., Zushi N., Maekawa T., Kato Y., Murata I., Shimizu K., Yamamoto T. and Iida T. 2014 Radiat. Meas. 68 23 10.1016/j.radmeas.2014.06.011 Sato F., Zushi N., Maekawa T., Kato Y., Murata I., Shimizu K., Yamamoto T. and Iida T. Radiat. Meas. 1350-4487 68 2014 23 [28] Sato F., Zushi N., Nagai T., Tanaka T., Kato Y., Yamamoto T. and Iida T. 2013 Radiat. Meas. 53–54 8 10.1016/j.radmeas.2013.03.016 Sato F., Zushi N., Nagai T., Tanaka T., Kato Y., Yamamoto T. and Iida T. Radiat. Meas. 1350-4487 53–54 2013 8 [29] Tsuchida J., Shneider J., Rinke M. T. and Eckert H. 2011 J. Phys. Chem. C 115 21927 10.1021/jp205700j Tsuchida J., Shneider J., Rinke M. T. and Eckert H. J. Phys. Chem. 1932-7447 115 C 2011 21927 [30] Yokota R. 1969 Oyo Buturi 38 1077 [in Japanese] Yokota R. Oyo Buturi 0369-8009 38 1969 1077
PY - 2019
Y1 - 2019
N2 - Ag-doped phosphate glasses containing Na and Al cations have been used in radiophotoluminescence (RPL) dosimeters. The formation mechanism of RPL center (Ag2+ and ) in Ag-doped phosphate glasses, containing various cations, has unresolved issues. Herein, we investigated the mechanism of the RPL center formation in Ag-doped phosphate glasses from the viewpoints of temperature dependence and activation energy of RPL center formation. We estimated the activation energies of RPL center formation in Ag-doped phosphate glasses containing Na and Al (Na-Al/Ag), Na and K (Na-K/Ag), and Al and K (Al-K/Ag) cations. The activation energy of formation did not increase with the first ionization energy of the cations contained in the glasses. This result suggests that electrons are trapped not at cations but at negative ion vacancies before forming Furthermore, the activation energy of formation increased with increasing mean molecular volume as the distance between the electron trapping site and increases. On the other hand, the activation energy of formation decreased with increasing mean molecular volume which is the opposite of the result of Consideration of temperature dependence of RPL intensity, the intensity of the RPL corresponding to in Al-K/Ag increased slightly at 300 K from that at 25 K. In addition, the concentration at 25 K in Al-K/Ag was approximately half of that at 300 K. These results indicate that only holes trapped at shallow trap sites transfer to in Al-K/Ag.
AB - Ag-doped phosphate glasses containing Na and Al cations have been used in radiophotoluminescence (RPL) dosimeters. The formation mechanism of RPL center (Ag2+ and ) in Ag-doped phosphate glasses, containing various cations, has unresolved issues. Herein, we investigated the mechanism of the RPL center formation in Ag-doped phosphate glasses from the viewpoints of temperature dependence and activation energy of RPL center formation. We estimated the activation energies of RPL center formation in Ag-doped phosphate glasses containing Na and Al (Na-Al/Ag), Na and K (Na-K/Ag), and Al and K (Al-K/Ag) cations. The activation energy of formation did not increase with the first ionization energy of the cations contained in the glasses. This result suggests that electrons are trapped not at cations but at negative ion vacancies before forming Furthermore, the activation energy of formation increased with increasing mean molecular volume as the distance between the electron trapping site and increases. On the other hand, the activation energy of formation decreased with increasing mean molecular volume which is the opposite of the result of Consideration of temperature dependence of RPL intensity, the intensity of the RPL corresponding to in Al-K/Ag increased slightly at 300 K from that at 25 K. In addition, the concentration at 25 K in Al-K/Ag was approximately half of that at 300 K. These results indicate that only holes trapped at shallow trap sites transfer to in Al-K/Ag.
UR - http://www.scopus.com/inward/record.url?scp=85070752493&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85070752493&partnerID=8YFLogxK
U2 - 10.7567/1347-4065/ab0c84
DO - 10.7567/1347-4065/ab0c84
M3 - Article
AN - SCOPUS:85070752493
VL - 58
JO - Japanese Journal of Applied Physics, Part 1: Regular Papers & Short Notes
JF - Japanese Journal of Applied Physics, Part 1: Regular Papers & Short Notes
SN - 0021-4922
IS - 6
M1 - 062003
ER -