Teleoperation of all-terrain robot using continuous acquisition of three-dimensional environment under time-delayed narrow bandwidth communication

Keiji Nagatani, Naoki Tokunaga, Yoshito Okada, Kazuya Yoshida, Yasushi Hada, Tomoaki Yoshida, Eiji Koyanagi

Research output: Chapter in Book/Report/Conference proceedingConference contribution

7 Citations (Scopus)

Abstract

Mobile rescue robots used in search and rescue missions must be able to navigate in unknown environments and map these environments. In such situations, three-dimensional (3D) data obtained by a laser range finder is very useful for supporting teleoperation of robots to locate victims and aid rescue crews in devising rescue strategies. However, when using conventional scanning systems to obtain such 3D data, the operators must wait for a few seconds and halt the operation of the rescue robot. To solve this time-loss-problem, our research group proposed a continuous acquisition system for acquiring 3D environment data for tracked vehicles using the 3D odometry with gyroscope. In locomotion issues, actuated subtracks, attached at the front and the back of the main body to improve stability of the robot, are commonly used to navigate on rough terrains, overcome large obstacles, and maneuver up or down stairs. However, managing actuated subtracks is difficult for the operator because only a small amount of information about the robot pose and environment is available. To assist the operators, our research group developed an autonomous control system based on the terrain data obtained using laser range finders for actuated sub-tracks. In this study, on the basis of the above systems, we developed a teleoperation system for mobile robots that functions effectively under conditions of time-delayed and narrow bandwidth wireless communication. In this paper, we introduce our teleoperation system and report the results of experiments performed to validate the system.

Original languageEnglish
Title of host publication2009 IEEE International Workshop on Safety, Security and Rescue Robotics, SSRR 2009
DOIs
Publication statusPublished - 2009 Dec 1
Event2009 IEEE International Workshop on Safety, Security and Rescue Robotics, SSRR 2009 - Denver, CO, United States
Duration: 2009 Nov 32009 Nov 6

Publication series

Name2009 IEEE International Workshop on Safety, Security and Rescue Robotics, SSRR 2009

Other

Other2009 IEEE International Workshop on Safety, Security and Rescue Robotics, SSRR 2009
CountryUnited States
CityDenver, CO
Period09/11/309/11/6

Keywords

  • 3D map
  • All-terrain robot
  • Teleoperation

ASJC Scopus subject areas

  • Artificial Intelligence
  • Computer Vision and Pattern Recognition
  • Safety, Risk, Reliability and Quality

Fingerprint Dive into the research topics of 'Teleoperation of all-terrain robot using continuous acquisition of three-dimensional environment under time-delayed narrow bandwidth communication'. Together they form a unique fingerprint.

Cite this