T-type calcium channel enhancer SAK3 promotes dopamine and serotonin releases in the hippocampus in naive and amyloid precursor protein knock-in mice

Shuo Wang, Yasushi Yabuki, Kazuya Matsuo, Jing Xu, Hisanao Izumi, Kenji Sakimura, Takashi Saito, Takaomi C. Saido, Kohji Fukunaga

Research output: Contribution to journalArticlepeer-review

7 Citations (Scopus)

Abstract

T-type calcium channels in the brain mediate the pathophysiology of epilepsy, pain, and sleep. Recently, we developed a novel therapeutic candidate, SAK3 (ethyl 8'-methyl-2',4-dioxo-2-(piperidin-1-yl)-2'H-spiro[cyclopentane-1,3'-imidazo[1,2-a] pyridine]-2-ene-3-car-boxylate), for Alzheimer's disease (AD). The cognitive improvement by SAK3 is closely associated with enhanced acetylcholine (ACh) release in the hippocampus. Since monoamines such as dopamine (DA), noradrenaline (NA), and serotonin (5-HT) are also involved in hippocampus-dependent learning and psychomotor behaviors in mice, we investigated the effects of SAK3 on these monoamine releases in the mouse brain. Oral administration of SAK3 (0.5 mg/kg, p.o.) significantly promoted DA and 5-HT releases in the naive mouse hippocampal CA1 region but not in the medial prefrontal cortex (mPFC), while SAK3 did not affect NA release in either brain region. The T-type calcium channel-specific inhibitor, NNC 55-0396 (1 μM) significantly antagonized SAK3-enhanced DA and 5-HT releases in the hippocampus. Interestingly, the α7 nicotinic ACh receptor (nAChR) antagonist, methyllycaconitine (1 nM) significantly inhibited DA release, and the α4 nAChR antagonist, dihydro-β-erythroidine (100 μM) significantly blocked both DA and 5-HT releases following SAK3 (0.5 mg/kg, p.o.) administration in the hippocampus. SAK3 did not alter basal monoamine contents both in the mPFC and hippocampus. SAK3 (0.5 mg/kg, p.o.) administration also significantly elevated DA and 5-HT releases in the hippocampal CA1 region of amyloid-precursor protein (APP)NL-GF knock-in (KI) mice. Moreover, hippocampal DA and 5-HT contents were significantly decreased in APPNL-GF KI mice. Taken together, our data suggest that SAK3 promotes monoamine DA and 5-HT releases by enhancing the T-type calcium channel and nAChR in the mouse hippocampus.

Original languageEnglish
Article numbere0206986
JournalPloS one
Volume13
Issue number12
DOIs
Publication statusPublished - 2018 Dec

ASJC Scopus subject areas

  • Biochemistry, Genetics and Molecular Biology(all)
  • Agricultural and Biological Sciences(all)
  • General

Fingerprint Dive into the research topics of 'T-type calcium channel enhancer SAK3 promotes dopamine and serotonin releases in the hippocampus in naive and amyloid precursor protein knock-in mice'. Together they form a unique fingerprint.

Cite this