Synthesis of carbon nanotubes-Ni composite for micromechanical elements application

Research output: Contribution to journalConference article

Abstract

We present the fabrication and characterization of a silicon micromirror with carbon nanotubes (CNTs)-nickel (Ni) composite beams, and evaluate the mechanical stability of the micromirror in terms of resonant frequency. A novel electroplating method is developed for the synthesis of the CNTs-Ni composite. The weight fraction of the CNTs in the electroplated composite is 2.6 wt%, and the ultramicroindentation hardness of the composite is 18.6 GPa. The maximum variation of the resonant frequency of the fabricated micromirror during a long term stability test is approximately 0.25%, and its scanning angle is approximately 20°. It shows the potential ability of the CNTs-Ni composite for micromechanical elements application.

Original languageEnglish
Article number7050974
Pages (from-to)401-404
Number of pages4
JournalProceedings of the IEEE International Conference on Micro Electro Mechanical Systems (MEMS)
Volume2015-February
Issue numberFebruary
DOIs
Publication statusPublished - 2015 Feb 26
Event2015 28th IEEE International Conference on Micro Electro Mechanical Systems, MEMS 2015 - Estoril, Portugal
Duration: 2015 Jan 182015 Jan 22

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics
  • Mechanical Engineering
  • Electrical and Electronic Engineering

Fingerprint Dive into the research topics of 'Synthesis of carbon nanotubes-Ni composite for micromechanical elements application'. Together they form a unique fingerprint.

  • Cite this