Synthesis, crystal structure, and high-temperature phase transition of the novel plumbide Na2MgPb

Takahiro Yamada, Takuji Ikeda, Ralf P. Stoffel, Volker L. Deringer, Richard Dronskowski, Hisanori Yamane

Research output: Contribution to journalArticlepeer-review

7 Citations (Scopus)

Abstract

A hitherto unknown sodium magnesium plumbide, Na2MgPb, was synthesized by heating the constituent elements. Na2MgPb crystallizes in a hexagonal unit cell with the Li2CuAs-type structure (P6 3/mmc, Z = 2, a = 5.110(2) Å, c = 10.171(4) Å at 293 K). The compound furthermore displays polymorphism: high-temperature powder XRD measurements revealed that hexagonal Na2MgPb (dubbed the "α" phase) transforms to another hexagonal phase (β) which is existent at 493-553 K, and the β phase changes to a cubic structure (γ) at 533-633 K further. The molar volume of γ-Na2MgPb is approximately 9% and 13% smaller than the molar volumes of the α phase and the β phase, respectively (at 543 K). The electrical resistivity of Na2MgPb is 0.39 mω at 300 K; it rises with increasing temperature from 300 to 491 K, and then drops at 491 and 523 K. These abrupt changes in resistivity may be attributed to the α → β and β → γ phase transitions, respectively. To gain further insight into the structure of cubic γ-Na2MgPb, putative models with regular Heusler-type (Cu2MnAl-type) and inverse Heusler-type (Li 2AgSb-type) arrangements were probed using first-principles computations based on density functional theory (DFT). These computations indicate that, for the cubic γ phase, an inverse Heusler-type structure is distinctly more stable than the alternative regular Heusler type (at 0 K); beyond that, ab initio thermochemistry was successfully used to verify the stability ordering (α-Na2MgPb being favorable at low temperature, γ-Na2MgPb at high temperature), albeit the theoretically predicted transition temperature of 900 K which is higher than observed in experiment.

Original languageEnglish
Pages (from-to)5253-5259
Number of pages7
JournalInorganic chemistry
Volume53
Issue number10
DOIs
Publication statusPublished - 2014 May 19

ASJC Scopus subject areas

  • Physical and Theoretical Chemistry
  • Inorganic Chemistry

Fingerprint Dive into the research topics of 'Synthesis, crystal structure, and high-temperature phase transition of the novel plumbide Na<sub>2</sub>MgPb'. Together they form a unique fingerprint.

Cite this