Synthesis and structure of pristine and alkali-metal-intercalated single-walled carbon nanotubes

C. Bower, S. Suzuki, K. Tanigaki, O. Zhou

Research output: Contribution to journalArticlepeer-review

91 Citations (Scopus)


Single-walled carbon nanotubes (SWNTs) were synthesized by ablating graphite targets with either the primary (1064nm) or the second-harmonic (532 nm) beam of a pulsed Nd: YAG laser at high temperature. The structure and the morphology of the raw materials were studied by high-resolution transmission microscopy (HRTEM), X-ray diffraction, and micro-Raman techniques. The diameter distribution of the SWNTs was found to vary with the laser frequency used for ablation. The raw materials were reacted with alkali metal (K, Cs) by vapor transport method. The saturation composition was found to be MC8 (M = K or Cs). No crystalline structure was observed in the reacted materials by X-ray diffraction. In situ metal deposition, TEM, and electron energy loss spectroscopy (EELS) measurements were performed on individual SWNT bundles at 300 K. The results showed that alkali metals can be reversibly intercalated into the SWNT bundles. Although intercalation induced structural disorder, individual nanotubes and to a large extent the bundles maintained their structural integrity after intercalation and de-intercalation.

Original languageEnglish
Pages (from-to)47-52
Number of pages6
JournalApplied Physics A: Materials Science and Processing
Issue number1
Publication statusPublished - 1998 Jan 1

ASJC Scopus subject areas

  • Chemistry(all)
  • Materials Science(all)


Dive into the research topics of 'Synthesis and structure of pristine and alkali-metal-intercalated single-walled carbon nanotubes'. Together they form a unique fingerprint.

Cite this