Synthesis and photophysical properties of zinc myoglobin appending an ethidium ion as a DNA intercalator

Hiroshi Takashima, Yukiko Matsushima, Yasuyuki Araki, Osamu Ito, Keiichi Tsukahara

Research output: Contribution to journalArticlepeer-review

9 Citations (Scopus)

Abstract

In order to elucidate the intramolecular photoinduced electron-transfer or energy-transfer mechanisms of the zinc myoglobin (ZnMb) dyad and to construct a photoreaction system within a Mb-DNA complex, we newly prepared ZnMb appending an ethidium ion (Et+). The steady-state fluorescence of ZnMb-Et + at 600 nm and its lifetime (2.2 ns) indicate that the excited singlet state of 1(ZnMb)*is not quenched by the Et+ moiety, whereas the lifetime of the excited triplet state of 3(ZnMb)*-Et+ was shorter (τ = 4.3 ms) than those of ZnMb and the intermolecular (ZnMb + ethidium) system. Upon photoirradiation of Et+, fluorescence studies indicated the intramolecular quenching reactions from the excited singlet state, 1(Et+)*, to ZnMb, the process of which is likely the photoinduced energy-transfer reaction via a through-space mechanism. We also demonstrate the photophysical and spectroscopic properties of ZnMb-Et+ in the presence of calf thymus (CT) DNA. The changes in the absorption and fluorescence spectra of ZnMb-Et+ on the addition of CT-DNA up to 15 equiv were very small, indicating that there are no major changes in the heme pocket. However, we observed a longer lifetime of 3(ZnMb)*-Et+ in the presence of CT-DNA (τ = 5.3 ms) by single flash photolysis. This was induced by noncovalent interactions between Et+ and CT-DNA, followed by a conformational change of Et+ at the surface of ZnMb, where the donor-acceptor distance was probably elongated by CT-DNA. The synthetic manipulation at the Mb surface, by using a DNA intercalator coupled with photoinduced reaction, may provide a sensitive transient signal for DNA and valuable information to construct new Mb-DNA complex.

Original languageEnglish
Pages (from-to)171-181
Number of pages11
JournalJournal of Biological Inorganic Chemistry
Volume13
Issue number2
DOIs
Publication statusPublished - 2008 Feb 1

Keywords

  • DNA
  • Ethidium ion
  • Intercalator
  • Kinetics
  • Zinc myoglobin

ASJC Scopus subject areas

  • Biochemistry
  • Inorganic Chemistry

Fingerprint Dive into the research topics of 'Synthesis and photophysical properties of zinc myoglobin appending an ethidium ion as a DNA intercalator'. Together they form a unique fingerprint.

Cite this