Supramolecular cation assemblies of hydrogen-bonded (NH4+/NH2NH3+)(crown ether) in [Ni(dmit)2]-based molecular conductors and magnets

Tomoyuki Akutagawa, Tatsuo Hasegawa, Takayoshi Nakamura, Tamotsu Inabe

Research output: Contribution to journalArticlepeer-review

70 Citations (Scopus)

Abstract

Hydrogen-bonded supramolecular cation assemblies of (NH4+/NH2-NH3+)(crown ether), where the crown ether is [12]crown-4, [15]crown-5, or [18]crown-6, were incorporated into electrically conducting [Ni(dmit)2] salts (dmit2- = 2-thioxo-1,3-dithiole-4,5-dithiolate). (NH,4,+)([12]crown-4)[Ni(dmit)2]3 (CH3CN)2 had a pyramidal shape, while ionic channels were observed in (NH4+)0.88([15]crown-5)[Ni (dmit)2]2 and (NH4+)0.70-([18]crown-6)[Ni (dmit)2]2. Both (NH4+)0.88([15]crown-5) and (NH4+)0.70([18]crown-6) contained regularly spaced [Ni(dmit)2] stacks formed by N-H···O hydrogen bonding between the oxygen atoms in crown ethers and the NH4+ ion. NH4+ occurred nonstoichiometrically; there were vacant ionic sites in the ionic channels. The ionic radius of NH4+ is larger than the cavity radius of [15]-crown-5 and [18]crown-6. Therefore, NH4+ ions could not pass through the cavity and were distributed randomly in the ionic channels. The static disorder caused the conduction electrons to be randomly localized to the [Ni(dmit)2] stacks. Hydrazinium (NH2-NH3+) formed the supramolecular cations in (NH2-NH3+)([12]crown-4)2 [Ni(dmit)2]4 and (NH2-NH3+)2([15]- crown-5)3[Ni(dmit)2]6, possessing a sandwich and club-sandwich structure, respectively. To the best of our knowledge, these represent the first hydrazinium-crown ether assemblies to be identified in the solid. In the supramolecular cations, hydrogen bonding was detected between the ammonium or the amino protons of NH2-NH3+ and the oxygen atoms of crown ethers. The sandwich-type cations coexisted with the [Ni-(dmit)2] dimer stacks. Although the assemblies were typically semiconducting, ferromagnetic interaction (Weiss temperature = +1 K) was detected in the case of (NH2-NH3+)2([15]crown-5)3[Ni (dmit)2]6. The (NH2-NH3+)0.8([18]crown-6) [Ni(dmit)2]2 and (NH4+)0.76([18]crown-6)[Ni (dmit)22 crystals were isomorphous. The large and flexible [18]crown-6 allowed for maintaining the same ionic channel structure through replacement of the NH4+ cation by NH2-NH3+.

Original languageEnglish
Pages (from-to)8903-8911
Number of pages9
JournalJournal of the American Chemical Society
Volume124
Issue number30
DOIs
Publication statusPublished - 2002 Jul 31
Externally publishedYes

ASJC Scopus subject areas

  • Catalysis
  • Chemistry(all)
  • Biochemistry
  • Colloid and Surface Chemistry

Fingerprint

Dive into the research topics of 'Supramolecular cation assemblies of hydrogen-bonded (NH<sub>4</sub><sup>+</sup>/NH<sub>2</sub>NH<sub>3</sub><sup>+</sup>)(crown ether) in [Ni(dmit)<sub>2</sub>]-based molecular conductors and magnets'. Together they form a unique fingerprint.

Cite this