Abstract
We report on the self-spreading behavior of a supported lipid bilayer (SLB) on a silicon surface with various 100 nm nanostructures. SLBs have been successfully grown from a small spot of a lipid molecule source both on a flat surface and uneven surfaces with 100 nm up-and-down nanostructures. After an hour, the self-spreading SLB forms a large circle or an ellipse depending on the nanostructure pattern. The results are explained by a model that shows that a single-layer SLB grows along the nanostructured surfaces. The model is further supported by a quantitative analyses of our data. We also discuss the stability of the SLB on nanostructured surfaces in terms of the balance between its bending and adhesion energies.
Original language | English |
---|---|
Pages (from-to) | 367-371 |
Number of pages | 5 |
Journal | Langmuir |
Volume | 23 |
Issue number | 2 |
DOIs | |
Publication status | Published - 2007 Jan 16 |
Externally published | Yes |
ASJC Scopus subject areas
- Materials Science(all)
- Condensed Matter Physics
- Surfaces and Interfaces
- Spectroscopy
- Electrochemistry