Superplastic nanoforming of optical components of Pt-based metallic glass

Y. Saotome, Y. Fukuda, I. Yamaguchi, A. Inoue

Research output: Contribution to journalArticlepeer-review

58 Citations (Scopus)


Metallic glasses are useful for fabricating nanodevices due to their viscosity and homogeneity on nanometer scales. In this study, we developed optical components of metallic glasses by superplastic nanoforming. Metallic glasses exhibit Newtonian viscous flow in a supercooled temperature range between the glass transition temperature and the crystallization temperature. This study used Pt-based metallic glass with a glass transition temperature of 502 K. This material was applied to reflective interference optical components, and a diffraction grating (1 μm interval) and a hologram were fabricated by superplastic nanoforming. Dies were made by Ni-electroforming, with master models fabricated by photolithography of the interference pattern. The working temperature of Pt-based metallic glass was 540 K under a compressive stress of 10 MPa. The results demonstrated the advantages of the superplastic nanoforming technique on metallic glass and for mass production of optical components.

Original languageEnglish
Pages (from-to)97-101
Number of pages5
JournalJournal of Alloys and Compounds
Issue numberSPEC. ISS.
Publication statusPublished - 2007 May 31


  • Amorphous materials
  • Nanofabrications
  • Nanoimprint
  • Optical properties
  • Strain

ASJC Scopus subject areas

  • Mechanics of Materials
  • Mechanical Engineering
  • Metals and Alloys
  • Materials Chemistry


Dive into the research topics of 'Superplastic nanoforming of optical components of Pt-based metallic glass'. Together they form a unique fingerprint.

Cite this