TY - JOUR
T1 - Superoxide-mediated Fe(II) formation from organically complexed Fe(III) in coastal waters
AU - Fujii, Manabu
AU - Ito, Hiroaki
AU - Rose, Andrew L.
AU - Waite, T. David
AU - Omura, Tatsuo
N1 - Funding Information:
We thank Yosuke Fuchigami for his enormous contribution to the experimental measurements in this work. We also appreciate valuable advice provided by Dr. A. Ninh Pham on Fe complexation by citrate. This work was funded by Research Fellowships of the Japan Society for the Promotion of Science (JSPS) for Young Scientists.
PY - 2008/12/15
Y1 - 2008/12/15
N2 - Fe(III) complexed by organic ligands (Fe(III)L) is the primary form of dissolved Fe in marine and coastal environments. Superoxide, typically produced in biological and photochemical processes, is one of the reducing agents that contributes to transformation of Fe(III)L to bioavailable, free dissolved Fe(II) (Fe(II)′). In this work, the kinetics of superoxide-mediated Fe(II)′ formation from Fe(III)L in a simulated coastal water system were investigated and a comprehensive kinetic model was developed using citrate and fulvic acid as exemplar Fe-binding ligands. To simulate a coastal environment in laboratory experiments, Fe(III)L samples with various ligand/Fe ratios were incubated for 5 min to 1 week in seawater medium. At each ratio and incubation time, the rate of superoxide-mediated Fe(II)′ formation was determined in the presence of the strong Fe(II) binding ligand ferrozine by spectrophotometrically measuring the ferrous-ferrozine complex generated at a constant concentration of superoxide. The Fe(II)′ formation rate generally decreased with incubation time, as Fe(III)L gradually dissociated to form less reactive Fe(III) oxyhydroxide. However, when the ligand/Fe ratio was sufficiently high, the dissociation of Fe(III)L (and subsequent Fe precipitation) was suppressed and Fe(II)′ was formed at a higher rate. The rate of Fe(II)′ produced during the experiment was explained by the kinetic model. The model confirmed that both the ligand/Fe ratio and incubation time have a significant effect on the pathway via which Fe(II)′ is formed from Fe(III)-fulvic acid complexes.
AB - Fe(III) complexed by organic ligands (Fe(III)L) is the primary form of dissolved Fe in marine and coastal environments. Superoxide, typically produced in biological and photochemical processes, is one of the reducing agents that contributes to transformation of Fe(III)L to bioavailable, free dissolved Fe(II) (Fe(II)′). In this work, the kinetics of superoxide-mediated Fe(II)′ formation from Fe(III)L in a simulated coastal water system were investigated and a comprehensive kinetic model was developed using citrate and fulvic acid as exemplar Fe-binding ligands. To simulate a coastal environment in laboratory experiments, Fe(III)L samples with various ligand/Fe ratios were incubated for 5 min to 1 week in seawater medium. At each ratio and incubation time, the rate of superoxide-mediated Fe(II)′ formation was determined in the presence of the strong Fe(II) binding ligand ferrozine by spectrophotometrically measuring the ferrous-ferrozine complex generated at a constant concentration of superoxide. The Fe(II)′ formation rate generally decreased with incubation time, as Fe(III)L gradually dissociated to form less reactive Fe(III) oxyhydroxide. However, when the ligand/Fe ratio was sufficiently high, the dissociation of Fe(III)L (and subsequent Fe precipitation) was suppressed and Fe(II)′ was formed at a higher rate. The rate of Fe(II)′ produced during the experiment was explained by the kinetic model. The model confirmed that both the ligand/Fe ratio and incubation time have a significant effect on the pathway via which Fe(II)′ is formed from Fe(III)-fulvic acid complexes.
UR - http://www.scopus.com/inward/record.url?scp=56549099070&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=56549099070&partnerID=8YFLogxK
U2 - 10.1016/j.gca.2008.09.029
DO - 10.1016/j.gca.2008.09.029
M3 - Article
AN - SCOPUS:56549099070
SN - 0016-7037
VL - 72
SP - 6079
EP - 6089
JO - Geochmica et Cosmochimica Acta
JF - Geochmica et Cosmochimica Acta
IS - 24
ER -