TY - JOUR
T1 - Successive Phase Transition, Dielectric Ordering, and Liquid Crystalline Behavior of Simple (Laurylammonium)(Phenyl Phosphates) Salts
AU - Cai, Zhong Sheng
AU - Uchikawa, Shota
AU - Hoshino, Norihisa
AU - Takeda, Takashi
AU - Zheng, Li Min
AU - Noro, Shin Ichiro
AU - Nakamura, Takayoshi
AU - Akutagawa, Tomoyuki
N1 - Publisher Copyright:
© 2016 American Chemical Society.
PY - 2016/7/14
Y1 - 2016/7/14
N2 - Successive phase transitions of three kinds of simple 1:1 organic salts of laurylammonium (LA)-phenyl (3-pyridyl) phosphate derivative were examined in terms of thermal properties, single crystal X-ray structural analyses, powder X-ray diffractions, and dielectric responses, where the phosphate anion was chemically modified from phenylphosphate (1) and 3-pyridylphosphate (2) to m-fluorophosphate (3). All 1:1 simple organic salts showed the successive solid-solid and solid-smectic A (SmA) phase transition with high thermal stability. Isostructural alternate cation-anion layer was observed in LA-1 and LA-2, and the packing structure of LA-3 was different from those of the former salts. The L-shaped cation-anion conformation in the molecular assemblies was transformed to the rod-like conformation through the phase transition to SmA phase, where both conformations coexisted in the intermediate solid phase of LA-2 and LA-3. The DSC, PXRD, and dielectric responses of LA-2 showed the antiferroelectric-paraelectric phase transition couple with the flip-flop motion of 3-pyridyl ring along the long axis of the molecule. On the contrary, such molecular motion of the phenyl ring did not show the dielectric phase transition due to no dipole change during molecular rotation of phenyl ring. The motional freedom of m-fluorophenyl ring in LA-3 was completely suppressed by the steric hindrance from the neighboring anions in the absence of dielectric ordering.
AB - Successive phase transitions of three kinds of simple 1:1 organic salts of laurylammonium (LA)-phenyl (3-pyridyl) phosphate derivative were examined in terms of thermal properties, single crystal X-ray structural analyses, powder X-ray diffractions, and dielectric responses, where the phosphate anion was chemically modified from phenylphosphate (1) and 3-pyridylphosphate (2) to m-fluorophosphate (3). All 1:1 simple organic salts showed the successive solid-solid and solid-smectic A (SmA) phase transition with high thermal stability. Isostructural alternate cation-anion layer was observed in LA-1 and LA-2, and the packing structure of LA-3 was different from those of the former salts. The L-shaped cation-anion conformation in the molecular assemblies was transformed to the rod-like conformation through the phase transition to SmA phase, where both conformations coexisted in the intermediate solid phase of LA-2 and LA-3. The DSC, PXRD, and dielectric responses of LA-2 showed the antiferroelectric-paraelectric phase transition couple with the flip-flop motion of 3-pyridyl ring along the long axis of the molecule. On the contrary, such molecular motion of the phenyl ring did not show the dielectric phase transition due to no dipole change during molecular rotation of phenyl ring. The motional freedom of m-fluorophenyl ring in LA-3 was completely suppressed by the steric hindrance from the neighboring anions in the absence of dielectric ordering.
UR - http://www.scopus.com/inward/record.url?scp=84978654531&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84978654531&partnerID=8YFLogxK
U2 - 10.1021/acs.jpcb.6b02213
DO - 10.1021/acs.jpcb.6b02213
M3 - Article
AN - SCOPUS:84978654531
VL - 120
SP - 6761
EP - 6770
JO - Journal of Physical Chemistry B
JF - Journal of Physical Chemistry B
SN - 1520-6106
IS - 27
ER -