Success of ammonia-fired, regenerator-heated, diffusion combustion gas turbine power generation and prospect of low NOx combustion with high combustion efficiency

Osamu Kurata, Norihiko Iki, Takayuki Matsunuma, Takahiro Inoue, Taku Tsujimura, Hirohide Furutani, Akihiro Hayakawa, Hideaki Kobayashi

Research output: Chapter in Book/Report/Conference proceedingConference contribution

1 Citation (Scopus)

Abstract

To protect against global warming, a massive influx of renewable energy is expected. Although hydrogen is a renewable media, its storage and transportation in large quantity is difficult. Ammonia, however, is a hydrogen energy carrier and carbon-free fuel, and its storage and transportation technology is already established. Although ammonia combustion was studied in the 1960s in the USA, the development of an ammonia combustion gas turbine had been abandoned because combustion efficiency was unacceptably low. Since that time, in the combustion field, ammonia has been thought of as a fuel N additive in the study of NOx formation. Recent demand for hydrogen carrier revives the usage of ammonia combustion, but no one has attempted an actual design setup for ammonia combustion gas turbine power generation. The National Institute of Advanced Industrial Science and Technology (AIST) in Japan successfully performed ammonia-kerosene co-fired gas turbine power generation in 2014, and ammonia-fired gas turbine power generation in 2015. In the facilities, a regenerator-heated, diffusion-combustion micro-gas turbine is used, and its high combustor inlet temperature enables high thermal efficiency of ammonia combustion compared with that of methane combustion. Adoption of the regenerator increased combustor inlet temperature and enhanced flame stability in ammonia-air combustion. Although NOx emission from a gas turbine combustor is high, a Selective Catalytic Reduction (SCR) after gas turbine combustor reduces NOx emission to less than 10 ppm. This means that the ammonia combustion gas turbine design, abandoned in the 1960s for its unacceptably low combustion efficiency, has performed successfully with regenerator and SCR technology. However, the weakness of these facilities was that they required large-size SCR equipment in order to suppress a high concentration of NOx. Although NOx reduction in the combustion process is desirable, low NOx combustion technology is difficult because ammonia had been thought of as a source of fuel-NO. In the case of premixed ammonia-air flame, there exists a low emission window of NOx and NH3 in a certain equivalence ratio, but combustion intensity is very low because the laminar burning velocity of NH3-air is one-fifth that of CH4-air. This means that, when utilizing the window of premixed ammonia-air flame, scale-up of the combustion chamber or fuel additives for enhancement of flame stability is necessary. This study shows that the addition of H2 is effective for low NOx combustion with high combustion efficiency. In addition, H2 can be easily made from NH3 decomposition. The other option is diffusion combustion. Further research on low NOx combustion is needed.

Original languageEnglish
Title of host publicationBoilers and Heat Recovery Steam Generator; Combustion Turbines; Energy Water Sustainability; Fuels, Combustion and Material Handling; Heat Exchangers, Condensers, Cooling Systems, and Balance-of-Plant
PublisherAmerican Society of Mechanical Engineers (ASME)
ISBN (Electronic)9780791857601
DOIs
Publication statusPublished - 2017 Jan 1
EventASME 2017 Power Conference Joint with ICOPE 2017, POWER 2017-ICOPE 2017, collocated with the ASME 2017 11th International Conference on Energy Sustainability, the ASME 2017 15th International Conference on Fuel Cell Science, Engineering and Technology, and the ASME 2017 Nuclear Forum - Charlotte, United States
Duration: 2017 Jun 262017 Jun 30

Publication series

NameAmerican Society of Mechanical Engineers, Power Division (Publication) POWER
Volume1

Other

OtherASME 2017 Power Conference Joint with ICOPE 2017, POWER 2017-ICOPE 2017, collocated with the ASME 2017 11th International Conference on Energy Sustainability, the ASME 2017 15th International Conference on Fuel Cell Science, Engineering and Technology, and the ASME 2017 Nuclear Forum
CountryUnited States
CityCharlotte
Period17/6/2617/6/30

ASJC Scopus subject areas

  • Mechanical Engineering
  • Energy Engineering and Power Technology

Fingerprint Dive into the research topics of 'Success of ammonia-fired, regenerator-heated, diffusion combustion gas turbine power generation and prospect of low NOx combustion with high combustion efficiency'. Together they form a unique fingerprint.

Cite this