Structural Evolution of Iridium Oxide Cluster Anions Ir nO m- (n = 5-8) with Sequential Oxidation: Binding Mode of O Atoms and Ir Framework

Ryohei Tomihara, Kiichirou Koyasu, Toshiaki Nagata, Jenna W.J. Wu, Motoyoshi Nakano, Keijiro Ohshimo, Fuminori Misaizu, Tatsuya Tsukuda

Research output: Contribution to journalArticlepeer-review

5 Citations (Scopus)

Abstract

Geometric structures of small cluster anions of iridium oxide IrnOm- (n = 5-8, m = 0-14) were investigated by ion mobility mass spectrometry (IMMS) and theoretical calculation to clarify the evolutional behavior of the binding modes of the O atoms and the motif of the Ir frameworks as a function of m. The collision cross sections (CCSs) for n = 5-7 determined by IMMS showed a monotonic increase with m, whereas those for n = 8 dropped abruptly by ∼10% at m = 11, which otherwise gradually increased with m. For n = 5, detailed comparison between the experimental CCS values and those calculated for various structural isomers revealed that the O atoms in Ir5Om- are preferentially bonded to terminal sites of the Ir5- cores throughout m = 1-8: the Ir5- cores retained compact motifs up to m = 5 but distorted significantly for m = 6-8. The experimental CCS values for Ir6O6- and Ir7O7- were also explained by on-top binding of O atoms while retaining the motifs of the Ir frameworks. The CCS values for n = 8 suggest that the O atoms are sequentially bonded to terminal sites of the cubic Ir8 frameworks for m = 1-6 and of the deformed Ir8 frameworks for m = 7-11. These on-top binding modes of the O atoms on small Ir clusters are in sharp contrast to the μ2 mode of the O atoms at bridge sites on the clusters of other transition metals and are ascribed to non-face-centered cubic (fcc) Ir frameworks. The sudden drop in the CCS values of Ir8Om- at m = 11 was associated with bond breakage in the Ir framework induced by transition of the binding mode of O atoms from an on-top motif to a μ2 bridging motif. These results suggest that the small Ir clusters exhibit novel oxidation catalysis by taking advantage of the unique chemical properties of O atoms adsorbed on the on-top sites on non-fcc Ir clusters.

Original languageEnglish
Pages (from-to)15301-15306
Number of pages6
JournalJournal of Physical Chemistry C
Volume123
Issue number24
DOIs
Publication statusPublished - 2019 Jun 20

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Energy(all)
  • Physical and Theoretical Chemistry
  • Surfaces, Coatings and Films

Fingerprint Dive into the research topics of 'Structural Evolution of Iridium Oxide Cluster Anions Ir <sub>n</sub>O <sub>m</sub><sup>-</sup> (n = 5-8) with Sequential Oxidation: Binding Mode of O Atoms and Ir Framework'. Together they form a unique fingerprint.

Cite this