Structural characterization of stress-induced martensitic transformation in a polycrystalline austenitic Fe-Mn-Si-Cr alloy

Shotaro Senoo, Kozo Shinoda, Masugu Sato, Tadatsugu Maruyama, Shigeru Suzuki

Research output: Contribution to journalArticlepeer-review

10 Citations (Scopus)

Abstract

Stress-induced martensitic transformation in Fe-Mn-Si alloys is characterized by the transformation of the fee matrix to the hcp phase, which is generally reversible. In this study, Debye rings obtained by monochromated X-ray diffraction using synchrotron radiation were used for analyzing the structural change of the hcp matrix to the hcp phase in a polycrystalline austenitic Fe-Mn-Si-Cr alloy that was deformed by the tensile test at room temperature. Structural changes resulting from the reverse transformation due to heating were also studied. The results showed that the occurrence of the stress-induced martensitic transformation was not uniform, but depended on the relationship between the orientation of polycrystalline grains and the tensile direction. The transformation appears to preferentially occur in grains with large Schmid factors for the shear of [2̄11](111) in the fcc matrix, and the formation of hcp phases also depends on the orientation of grains. The reverse transformation due to heating does not necessarily occur in the crystallographically reversible route. This indicates that irreversible deformation induced by dislocations during the tensile test restricts the reversible transformation of the alloy.

Original languageEnglish
Pages (from-to)1229-1234
Number of pages6
JournalMaterials Transactions
Volume49
Issue number6
DOIs
Publication statusPublished - 2008 Jun

Keywords

  • Polycrystalline iron-based alloys
  • Shape memory
  • Stress-induced martenstic transformation
  • Synchrotron radiation
  • X-ray diffraction

ASJC Scopus subject areas

  • Materials Science(all)
  • Condensed Matter Physics
  • Mechanics of Materials
  • Mechanical Engineering

Fingerprint Dive into the research topics of 'Structural characterization of stress-induced martensitic transformation in a polycrystalline austenitic Fe-Mn-Si-Cr alloy'. Together they form a unique fingerprint.

Cite this