Strong Hydrogen Bonds at the Interface between Proton-Donating and -Accepting Self-Assembled Monolayers on Au(111)

Hiroyuki S. Kato, Shinya Yoshimoto, Akira Ueda, Susumu Yamamoto, Yusuke Kanematsu, Masanori Tachikawa, Hatsumi Mori, Jun Yoshinobu, Iwao Matsuda

Research output: Contribution to journalArticle

5 Citations (Scopus)

Abstract

Hydrogen-bonding heterogeneous bilayers on substrates have been studied as a base for new functions of molecular adlayers by means of atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), infrared reflection absorption spectroscopy (IRAS), and density functional theory (DFT) calculations. Here, we report the formation of the catechol-fused bis(methylthio)tetrathiafulvalene (H2Cat-BMT-TTF) adlayer hydrogen bonding with an imidazole-terminated alkanethiolate self-assembled monolayer (Im-SAM) on Au(111). The heterogeneous bilayer is realized by sequential two-step immersions in solutions for the individual Im-SAM and H2Cat-BMT-TTF adlayer formations. In the measurements by AFM, a grained H2Cat-BMT-TTF adlayer on Im-SAM is revealed. The coverage and the chemical states of H2Cat-BMT-TTF on Im-SAM are specified by XPS. On the vibrational spectrum measured by IRAS, the strong hydrogen bonds between H2Cat-BMT-TTF and Im-SAM are characterized by the remarkably red-shifted OH stretching mode at 3140 cm-1, which is much lower than that for hydrogen-bonding water (typically ∼3300 cm-1). The OH stretching mode frequency and the adsorption strength for the H2Cat-BMT-TTF molecule hydrogen bonding with imidazole groups are quantitatively examined on the basis of DFT calculations.

Original languageEnglish
Pages (from-to)2189-2197
Number of pages9
JournalLangmuir
Volume34
Issue number5
DOIs
Publication statusPublished - 2018 Feb 6
Externally publishedYes

ASJC Scopus subject areas

  • Materials Science(all)
  • Condensed Matter Physics
  • Surfaces and Interfaces
  • Spectroscopy
  • Electrochemistry

Fingerprint Dive into the research topics of 'Strong Hydrogen Bonds at the Interface between Proton-Donating and -Accepting Self-Assembled Monolayers on Au(111)'. Together they form a unique fingerprint.

Cite this