Stress-inducible caspase substrate TRB3 promotes nuclear translocation of procaspase-3

Kouhei Shimizu, Shoukichi Takahama, Yaeta Endo, Tatsuya Sawasaki

Research output: Contribution to journalArticlepeer-review

20 Citations (Scopus)


Pseudokinase TRB3 is a stress-inducible nuclear protein, which has recently been shown to be involved in ER stress-induced apoptosis. However, it remains unclear how TRB3 contributes to the process. We recently demonstrated that TRB3 was cleaved by caspase-3 (CASP3) in vitro and also in apoptosis-induced cells. Thus, we investigate the role of TRB3 cleavage in the apoptotic process to address the above question. Overexpression studies revealed that the cleavage of TRB3 promoted CASP3/7 activation and apoptosis. In contrast, the anti-apoptotic effects were found under TRB3 non-cleavable conditions, such as ER stress, and also when the CASP3/7 activation was enhanced by knockdown of endogenous TRB3 expression. Interestingly, nuclear translocation of procaspase-3 (proCASP3) was observed in cells either overexpressing TRB3 or under tunicamycin-induced ER stress. Although forced cytoplasmic expression of proCASP3 enhanced apoptosis significantly, its nuclear expression did not produce any pro-apoptotic effect, suggesting that nuclear distribution of proCASP3 is not critical for the execution of apoptosis. Thus, TRB3 might prevent cytoplasmic activation of CASP3 by promoting proCASP3 entry into the nucleus, and thereby inhibit apoptosis. Taken together, our results suggest that TRB3, through its own cleavage, functions as a molecular switch between the cell survival and apoptotic pathways under stressful conditions.

Original languageEnglish
Article numbere42721
JournalPloS one
Issue number8
Publication statusPublished - 2012 Aug 9
Externally publishedYes

ASJC Scopus subject areas

  • Biochemistry, Genetics and Molecular Biology(all)
  • Agricultural and Biological Sciences(all)
  • General


Dive into the research topics of 'Stress-inducible caspase substrate TRB3 promotes nuclear translocation of procaspase-3'. Together they form a unique fingerprint.

Cite this