Strain-induced interference effects on the resonance raman cross section of carbon nanotubes

A. G. Souza Filho, N. Kobayashi, J. Jiang, A. Grüneis, R. Saito, S. B. Cronin, J. Mendes Filho, Ge G. Samsonidze, G. Dresselhaus, M. S. Dresselhaus

Research output: Contribution to journalArticlepeer-review

56 Citations (Scopus)

Abstract

In this Letter, we report the effects of strain on the electronic properties of single-wall carbon nanotubes. When we normalize the electronic transition energies to the corresponding values obtained for unstrained tubes, we obtain that, regardless of the tube diameter, all the data collapse onto universal curves following an n-m=constant family pattern. In the case of metallic tubes, quantum interference effects on the Raman cross section are predicted for strained tubes when the energies of the lower and the upper components have nearly the same values. Experimental evidence for the strain-induced Raman cross section changes is observed in single nanotube spectroscopy.

Original languageEnglish
Article number217403
JournalPhysical Review Letters
Volume95
Issue number21
DOIs
Publication statusPublished - 2005 Nov 18

ASJC Scopus subject areas

  • Physics and Astronomy(all)

Fingerprint Dive into the research topics of 'Strain-induced interference effects on the resonance raman cross section of carbon nanotubes'. Together they form a unique fingerprint.

Cite this