Strain Engineering for Anion Arrangement in Perovskite Oxynitrides

Daichi Oka, Yasushi Hirose, Fumihiko Matsui, Hideyuki Kamisaka, Tamio Oguchi, Naoyuki Maejima, Hiroaki Nishikawa, Takayuki Muro, Koichi Hayashi, Tetsuya Hasegawa

Research output: Contribution to journalArticlepeer-review

21 Citations (Scopus)

Abstract

Mixed-anion perovskites such as oxynitrides, oxyfluorides, and oxyhydrides have flexibility in their anion arrangements, which potentially enables functional material design based on coordination chemistry. However, difficulty in the control of the anion arrangement has prevented the realization of this concept. In this study, we demonstrate strain engineering of the anion arrangement in epitaxial thin films of the Ca1-xSrxTaO2N perovskite oxynitrides. Under compressive epitaxial strain, the axial sites in TaO4N2 octahedra tend to be occupied by nitrogen rather than oxygen, which was revealed by N and O K-edge linearly polarized X-ray absorption near-edge structure (LP-XANES) and scanning transmission electron microscopy combined with electron energy loss spectroscopy. Furthermore, detailed analysis of the LP-XANES indicated that the high occupancy of nitrogen at the axial sites is due to the partial formation of a metastable trans-type anion configuration. These results are expected to serve as a guide for the material design of mixed-anion compounds based on their anion arrangements.

Original languageEnglish
Pages (from-to)3860-3866
Number of pages7
JournalACS Nano
Volume11
Issue number4
DOIs
Publication statusPublished - 2017 Apr 25

Keywords

  • X-ray absorption near-edge structure
  • coordination chemistry
  • epitaxial thin film
  • oxynitride
  • perovskite
  • strain engineering

ASJC Scopus subject areas

  • Materials Science(all)
  • Engineering(all)
  • Physics and Astronomy(all)

Fingerprint Dive into the research topics of 'Strain Engineering for Anion Arrangement in Perovskite Oxynitrides'. Together they form a unique fingerprint.

Cite this