Abstract
Lattice strains near the Si/NiSi2 interface and their effects on electron energy-levels of Si were investigated via experimental and theoretical approaches. For highly spatially resolved analysis, electron nanoprobe techniques were employed: convergent beam electron diffraction (CBED) for lattice strain and electron energy-loss spectroscopy (EELS) for the electron energy-levels. Additionally, a theoretical analysis based on the density-functional theory (DFT) was performed to explain the experimental results. The actual distribution of the lattice strains was complicated; both tensile and compressive strains were found to coexist near the interface. Shifts in the Si L23-edge of the EEL spectra were found to be induced by the lattice strain. Finally, we described the "distribution of the electron energy-levels" as the strain distribution around the interface in a submicron region.
Original language | English |
---|---|
Pages (from-to) | 408-413 |
Number of pages | 6 |
Journal | Japanese Journal of Applied Physics, Part 1: Regular Papers and Short Notes and Review Papers |
Volume | 37 |
Issue number | 2 |
DOIs | |
Publication status | Published - 1998 Feb |
Externally published | Yes |
Keywords
- CBED
- DFT
- EELS
- Electron energy-level
- Lattice strain
ASJC Scopus subject areas
- Engineering(all)
- Physics and Astronomy(all)