TY - JOUR
T1 - Stereospecific amyloid-like fibril formation by a peptide fragment of β2-microglobulin
AU - Wadai, Hiromasa
AU - Yamaguchi, Kei Ichi
AU - Takahashi, Satoshi
AU - Kanno, Takashi
AU - Kawai, Tomoji
AU - Naiki, Hironobu
AU - Goto, Yuji
PY - 2005/1/11
Y1 - 2005/1/11
N2 - Understanding the role of the L/D-stereospecificity of amino acids is important in obtaining further insight into the mechanism of the formation of amyloid fibrils. β2-Microglobulin is a major component of amyloid fibrils deposited in patients with dialysis-related amyloidosis. A 22-residue peptide of β2-microglobulin, Ser20-Lys41 (L-K3 peptide), obtained by digestion with Acromobacter protease I, formed amyloid-like fibrils in 50% (v/v) 2,2,2-trifluoroethanol and 10 mM HCl at 25°C, as confirmed by thioflavin T fluorescence, circular dichroism spectra, and atomic force microscopy images. A synthetic K3 peptide composed of D-amino acids (D-K3 peptide) formed similar fibrils but with opposite chirality as indicated by circular dichroism spectra. A mixture of L-K3 and D-K3 peptides also formed fibrils, although the L- and D-amino acid composition of each fibril is unknown. To examine the possible cross-reactivity between L- and D-enantiomers, we carried out seeding experiments in which preformed seeds were extended by monomers. The results revealed that only the homologous extensions proceed smoothly, i.e., the growth of L-seeds by L-monomers or D-seeds by D-monomers. The results suggest that, while the fibrils derived from L- and D-peptides form in a similar manner but with opposite stereochemistry, a cross-reaction between them is prevented because the geometry of the mixed sheet cannot satisfy dominant factors for β-sheet stabilization.
AB - Understanding the role of the L/D-stereospecificity of amino acids is important in obtaining further insight into the mechanism of the formation of amyloid fibrils. β2-Microglobulin is a major component of amyloid fibrils deposited in patients with dialysis-related amyloidosis. A 22-residue peptide of β2-microglobulin, Ser20-Lys41 (L-K3 peptide), obtained by digestion with Acromobacter protease I, formed amyloid-like fibrils in 50% (v/v) 2,2,2-trifluoroethanol and 10 mM HCl at 25°C, as confirmed by thioflavin T fluorescence, circular dichroism spectra, and atomic force microscopy images. A synthetic K3 peptide composed of D-amino acids (D-K3 peptide) formed similar fibrils but with opposite chirality as indicated by circular dichroism spectra. A mixture of L-K3 and D-K3 peptides also formed fibrils, although the L- and D-amino acid composition of each fibril is unknown. To examine the possible cross-reactivity between L- and D-enantiomers, we carried out seeding experiments in which preformed seeds were extended by monomers. The results revealed that only the homologous extensions proceed smoothly, i.e., the growth of L-seeds by L-monomers or D-seeds by D-monomers. The results suggest that, while the fibrils derived from L- and D-peptides form in a similar manner but with opposite stereochemistry, a cross-reaction between them is prevented because the geometry of the mixed sheet cannot satisfy dominant factors for β-sheet stabilization.
UR - http://www.scopus.com/inward/record.url?scp=11844298976&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=11844298976&partnerID=8YFLogxK
U2 - 10.1021/bi0485880
DO - 10.1021/bi0485880
M3 - Article
C2 - 15628856
AN - SCOPUS:11844298976
VL - 44
SP - 157
EP - 164
JO - Biochemistry
JF - Biochemistry
SN - 0006-2960
IS - 1
ER -