Statistical mechanics of image restoration and error-correcting codes

Hidetoshi Nishimori, K. Y. Michael Wong

Research output: Contribution to journalArticlepeer-review

95 Citations (Scopus)

Abstract

We develop a statistical-mechanical formulation for image restoration and error-correcting codes. These problems are shown to be equivalent to the Ising spin glass with ferromagnetic bias under random external fields. We prove that the quality of restoration/decoding is maximized at a specific set of parameter values determined by the source and channel properties. For image restoration in a mean-field system a line of optimal performance is shown to exist in the parameter space. These results are illustrated by solving exactly the infinite-range model. The solutions enable us to determine how precisely one should estimate unknown parameters. Monte Carlo simulations are carried out to see how far the conclusions from the infinite-range model are applicable to the more realistic two-dimensional case in image restoration.

Original languageEnglish
Pages (from-to)132-144
Number of pages13
JournalPhysical Review E - Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics
Volume60
Issue number1
DOIs
Publication statusPublished - 1999

ASJC Scopus subject areas

  • Statistical and Nonlinear Physics
  • Statistics and Probability
  • Condensed Matter Physics

Fingerprint Dive into the research topics of 'Statistical mechanics of image restoration and error-correcting codes'. Together they form a unique fingerprint.

Cite this