Static closed loop test system for attitude control system of micro satellite RISING-2

Kazufumi Fukuda, Yuji Sakamoto, Toshinori Kuwahara, Kazuya Yoshida, Yukihiro Takahashi

Research output: Chapter in Book/Report/Conference proceedingConference contribution

2 Citations (Scopus)

Abstract

50-kg class micro satellite RISING-2 is now under development by Tohoku University and Hokkaido University. The development is at Flight Model phase. The main mission of the RISING-2 is Earth surface observations with 5-m resolution using a Cassegrain telescope with 10-cm diameter and 1-m focal length. Accurate attitude control capability with less than 0.1 deg direction errors and less than 0.02 deg/s angular velocity errors is required to realize this observation. The attitude control system realizes 3-axis stabilization for the observation by means of star sensors, gyro sensors, sun attitude sensors and reaction wheels. In this paper the static closed loop test system for the attitude control system of the RISING-2 is described. This test system is the simulation including the hardware of the attitude control system of the RISING-2. The results of the tests show that the pointing error is very larger than the results of software simulation.

Original languageEnglish
Title of host publication2011 IEEE/SICE International Symposium on System Integration, SII 2011
Pages890-895
Number of pages6
DOIs
Publication statusPublished - 2011 Dec 1
Event2011 IEEE/SICE International Symposium on System Integration, SII 2011 - Kyoto, Japan
Duration: 2011 Dec 202011 Dec 22

Publication series

Name2011 IEEE/SICE International Symposium on System Integration, SII 2011

Other

Other2011 IEEE/SICE International Symposium on System Integration, SII 2011
CountryJapan
CityKyoto
Period11/12/2011/12/22

ASJC Scopus subject areas

  • Computer Networks and Communications
  • Control and Systems Engineering

Fingerprint Dive into the research topics of 'Static closed loop test system for attitude control system of micro satellite RISING-2'. Together they form a unique fingerprint.

Cite this