Spontaneous baryogenesis from axions with generic couplings

Valerie Domcke, Yohei Ema, Kyohei Mukaida, Masaki Yamada

Research output: Contribution to journalArticlepeer-review

2 Citations (Scopus)

Abstract

Axion-like particles can source the baryon asymmetry of our Universe through spontaneous baryogenesis. Here we clarify that this is a generic outcome for essentially any coupling of an axion-like particle to the Standard Model, requiring only a non-zero velocity of the classical axion field while baryon or lepton number violating interactions are present in thermal bath. In particular, coupling the axions only to gluons is sufficient to generate a baryon asymmetry in the presence of electroweak sphalerons or the Weinberg operator. Deriving the transport equation for an arbitrary set of couplings of the axion-like particle, we provide a general framework in which these results can be obtained immediately. If all the operators involved are efficient, it suffices to solve an algebraic equation to obtain the final asymmetries. Otherwise one needs to solve a simple set of differential equations. This formalism clarifies some theoretical subtleties such as redundancies in the axion coupling to the Standard Model particles associated with a field rotation. We demonstrate how our formalism automatically evades potential pitfalls in the calculation of the final baryon asymmetry.

Original languageEnglish
Article number96
JournalJournal of High Energy Physics
Volume2020
Issue number8
DOIs
Publication statusPublished - 2020 Aug 1

Keywords

  • Cosmology of Theories beyond the SM
  • Thermal Field Theory

ASJC Scopus subject areas

  • Nuclear and High Energy Physics

Fingerprint Dive into the research topics of 'Spontaneous baryogenesis from axions with generic couplings'. Together they form a unique fingerprint.

Cite this