TY - JOUR
T1 - Spin-orbit coupling effects in dihydrides of third-row transition elements. II. Interplay of nonadiabatic coupling in the dissociation path of rhenium dihydride
AU - Koseki, Shiro
AU - Shimakura, Noriyuki
AU - Fujimura, Yuichi
AU - Asada, Toshio
AU - Kono, Hirohiko
N1 - Funding Information:
This work was partly supported by a Grant-in-Aid for Scientific Research on Priority Areas, “Molecular Theory for Real Systems” from the MEXT of the Japanese Government (Grant Nos. 19029040 and 20038042)
PY - 2009
Y1 - 2009
N2 - This is the second paper in a series of investigations on spin-orbit coupling (SOC) effects in dihydrides of third-row transition elements. The dissociation path of rhenium dihydride was explored using the multiconfiguration self-consistent-field method followed by diagonalization of SOC matrices, in which the Stevens-Basch-Krauss-Jasien-Cundari (SBKJC) basis sets were employed after adding one set of polarization functions for each atom. The most stable rhenium dihydride has a linear structure and its ground state is 6∑g+. Both C2v and Cs dissociation paths into a Re atom and a hydrogen molecule (Re (6S) + H2 (1*sum;g+)) were explored on the potential energy curves of low-lying states. A relatively high energy barrier was obtained along the C2v path and two conical intersections were found at the H-Re-H angles of 29.8° and 96.1° along the C 2v path. Since it was revealed that the geometrical deformation to Cs symmetry at the H-Re-H angle of 29.8° does not provide explicit lowering of the energy barrier for the dissociation, even after considering nonadiabatic couplings (NACs) in the neighborhood of the conical intersections, it can be concluded that the most feasible path is hopping from the lowest 6A 1 state to the lowest 6B 2 state at the H-Re-H angle of 96.1° followed by hopping from the lowest 6B 2 state back to the lowest 6A 1 state at the H-Re-H angle of 29.8°, where the latter crossing point is the highest in energy along this path. Thus, when the molecular system can reach the areas of these crossing points, the molecular system hops from one of the states to another owing to NAC or SOC effects; especially, SOC effects become important at the crossing point with C2v symmetry.
AB - This is the second paper in a series of investigations on spin-orbit coupling (SOC) effects in dihydrides of third-row transition elements. The dissociation path of rhenium dihydride was explored using the multiconfiguration self-consistent-field method followed by diagonalization of SOC matrices, in which the Stevens-Basch-Krauss-Jasien-Cundari (SBKJC) basis sets were employed after adding one set of polarization functions for each atom. The most stable rhenium dihydride has a linear structure and its ground state is 6∑g+. Both C2v and Cs dissociation paths into a Re atom and a hydrogen molecule (Re (6S) + H2 (1*sum;g+)) were explored on the potential energy curves of low-lying states. A relatively high energy barrier was obtained along the C2v path and two conical intersections were found at the H-Re-H angles of 29.8° and 96.1° along the C 2v path. Since it was revealed that the geometrical deformation to Cs symmetry at the H-Re-H angle of 29.8° does not provide explicit lowering of the energy barrier for the dissociation, even after considering nonadiabatic couplings (NACs) in the neighborhood of the conical intersections, it can be concluded that the most feasible path is hopping from the lowest 6A 1 state to the lowest 6B 2 state at the H-Re-H angle of 96.1° followed by hopping from the lowest 6B 2 state back to the lowest 6A 1 state at the H-Re-H angle of 29.8°, where the latter crossing point is the highest in energy along this path. Thus, when the molecular system can reach the areas of these crossing points, the molecular system hops from one of the states to another owing to NAC or SOC effects; especially, SOC effects become important at the crossing point with C2v symmetry.
UR - http://www.scopus.com/inward/record.url?scp=68249103553&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=68249103553&partnerID=8YFLogxK
U2 - 10.1063/1.3176510
DO - 10.1063/1.3176510
M3 - Article
C2 - 19655852
AN - SCOPUS:68249103553
VL - 131
JO - Journal of Chemical Physics
JF - Journal of Chemical Physics
SN - 0021-9606
IS - 4
M1 - 044122
ER -