Spin-dependent transport behavior in C60 and Alq3 based spin valves with a magnetite electrode (invited)

Xianmin Zhang, Shigemi Mizukami, Qinli Ma, Takahide Kubota, Mikihiko Oogane, Hiroshi Naganuma, Yasuo Ando, Terunobu Miyazaki

Research output: Contribution to journalArticlepeer-review

24 Citations (Scopus)

Abstract

The spin-dependent transport behavior in organic semiconductors (OSs) is generally observed at low temperatures, which likely results from poor spin injection efficiency at room temperature from the ferromagnetic metal electrodes to the OS layer. Possible reasons for this are the low Curie temperature and/or the small spin polarization efficiency for the ferromagnetic electrodes used in these devices. Magnetite has potential as an advanced candidate for use as the electrode in spintronic devices, because it can achieve 100% spin polarization efficiency in theory, and has a high Curie temperature (850K). Here, we fabricated two types of organic spin valves using magnetite as a high efficiency electrode. C60 and 8-hydroxyquinoline aluminum (Alq3) were employed as the OS layers. Magnetoresistance ratios of around 8% and over 6% were obtained in C60 and Alq3-based spin valves at room temperature, respectively, which are two of the highest magnetoresistance ratios in organic spin valves reported thus far. The magnetoresistance effect was systemically investigated by varying the thickness of the Alq3 layer. Moreover, the temperature dependence of the magnetoresistance ratios for C60 and Alq3-based spin valves were evaluated to gain insight into the spin-dependent transport behavior. This study provides a useful method in designing organic spin devices operated at room temperature.

Original languageEnglish
Article number172608
JournalJournal of Applied Physics
Volume115
Issue number17
DOIs
Publication statusPublished - 2014 May 7

ASJC Scopus subject areas

  • Physics and Astronomy(all)

Fingerprint Dive into the research topics of 'Spin-dependent transport behavior in C<sub>60</sub> and Alq<sub>3</sub> based spin valves with a magnetite electrode (invited)'. Together they form a unique fingerprint.

Cite this