Abstract
We have theoretically investigated the spin Hall magnetoresistance (SMR) and Rashba-Edelstein magnetoresistance (REMR), mediated by spin currents, in a ferrimagnetic insulator/nonmagnetic metal/heavy metal system in the diffusive regime. The magnitude of both SMR and REMR decreases with increasing thickness of the interlayer because of the current shunting effect and the reduction in spin accumulation across the interlayer. The latter contribution is due to driving a spin current and persists even in the absence of spin relaxation, which is essential for understanding the magnetoresistance ratio in trilayer structures.
Original language | English |
---|---|
Article number | 040306 |
Journal | Japanese journal of applied physics |
Volume | 56 |
Issue number | 4 |
DOIs | |
Publication status | Published - 2017 |
ASJC Scopus subject areas
- Engineering(all)
- Physics and Astronomy(all)
Access to Document
Other files and links
Fingerprint
Dive into the research topics of 'Spin-current-induced magnetoresistance in trilayer structure with nonmagnetic metallic interlayer'. Together they form a unique fingerprint.Cite this
- APA
- Standard
- Harvard
- Vancouver
- Author
- BIBTEX
- RIS
Spin-current-induced magnetoresistance in trilayer structure with nonmagnetic metallic interlayer. / Iguchi, Ryo; Sato, Koji; Uchida, Ken Ichi et al.
In: Japanese journal of applied physics, Vol. 56, No. 4, 040306, 2017.Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - Spin-current-induced magnetoresistance in trilayer structure with nonmagnetic metallic interlayer
AU - Iguchi, Ryo
AU - Sato, Koji
AU - Uchida, Ken Ichi
AU - Saitoh, Eiji
N1 - Funding Information: Ryo Iguchi Koji Sato Ken-ichi Uchida Eiji Saitoh Ryo Iguchi Koji Sato Ken-ichi Uchida Eiji Saitoh Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan WPI Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan National Institute for Materials Science, Tsukuba, Ibaraki 305-0047, Japan PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan Center for Spintronics Research Network, Tohoku University, Sendai 980-8577, Japan Advanced Science Research Center, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195, Japan Ryo Iguchi, Koji Sato, Ken-ichi Uchida and Eiji Saitoh 2017-04-01 2017-03-16 10:31:22 cgi/release: Article released bin/incoming: New from .zip Content from this work may be used under the terms of the Creative Commons Attribution 4.0 license . Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. Japan Society for the Promotion of Science https://doi.org/10.13039/501100001691 JP15H02012 JP26103005 yes We have theoretically investigated the spin Hall magnetoresistance (SMR) and Rashba–Edelstein magnetoresistance (REMR), mediated by spin currents, in a ferrimagnetic insulator/nonmagnetic metal/heavy metal system in the diffusive regime. The magnitude of both SMR and REMR decreases with increasing thickness of the interlayer because of the current shunting effect and the reduction in spin accumulation across the interlayer. The latter contribution is due to driving a spin current and persists even in the absence of spin relaxation, which is essential for understanding the magnetoresistance ratio in trilayer structures. � 2017 The Japan Society of Applied Physics [1] Žutić I., Fabian J. and Das Sarma S. 2004 Rev. Mod. Phys. 76 323 10.1103/RevModPhys.76.323 Žutić I., Fabian J. and Das Sarma S. Rev. Mod. Phys. 0034-6861 76 2004 323 [2] Fert A. 2008 Rev. Mod. Phys. 80 1517 10.1103/RevModPhys.80.1517 Fert A. Rev. Mod. Phys. 0034-6861 80 2008 1517 [3] Grünberg P. 2008 Rev. Mod. Phys. 80 1531 10.1103/RevModPhys.80.1531 Grünberg P. Rev. Mod. Phys. 0034-6861 80 2008 1531 [4] Nakayama H., Althammer M., Chen Y. T., Uchida K., Kajiwara Y., Kikuchi D., Ohtani T., Geprägs S., Opel M., Takahashi S., Gross R., Bauer G. E. W., Goennenwein S. T. B. and Saitoh E. 2013 Phys. Rev. Lett. 110 206601 10.1103/PhysRevLett.110.206601 Nakayama H., Althammer M., Chen Y. T., Uchida K., Kajiwara Y., Kikuchi D., Ohtani T., Geprägs S., Opel M., Takahashi S., Gross R., Bauer G. E. W., Goennenwein S. T. B. and Saitoh E. Phys. Rev. Lett. 110 206601 2013 [5] Althammer M., Meyer S., Nakayama H., Schreier M., Altmannshofer S., Weiler M., Huebl H., Geprägs S., Opel M., Gross R., Meier D., Klewe C., Kuschel T., Schmalhorst J.-M., Reiss G., Shen L., Gupta A., Chen Y.-T., Bauer G. E. W., Saitoh E. and Goennenwein S. T. B. 2013 Phys. Rev. B 87 224401 10.1103/PhysRevB.87.224401 Althammer M., Meyer S., Nakayama H., Schreier M., Altmannshofer S., Weiler M., Huebl H., Geprägs S., Opel M., Gross R., Meier D., Klewe C., Kuschel T., Schmalhorst J.-M., Reiss G., Shen L., Gupta A., Chen Y.-T., Bauer G. E. W., Saitoh E. and Goennenwein S. T. B. Phys. Rev. B 87 224401 2013 [6] Chen Y.-T., Takahashi S., Nakayama H., Althammer M., Goennenwein S. T. B., Saitoh E. and Bauer G. E. W. 2016 J. Phys.: Condens. Matter 28 103004 10.1088/0953-8984/28/10/103004 Chen Y.-T., Takahashi S., Nakayama H., Althammer M., Goennenwein S. T. B., Saitoh E. and Bauer G. E. W. J. Phys.: Condens. Matter 0953-8984 28 10 103004 2016 [7] Miao B. F., Huang S. Y., Qu D. and Chien C. L. 2014 Phys. Rev. Lett. 112 236601 10.1103/PhysRevLett.112.236601 Miao B. F., Huang S. Y., Qu D. and Chien C. L. Phys. Rev. Lett. 112 236601 2014 [8] Avci C. O., Garello K., Ghosh A., Gabureac M., Alvarado S. F. and Gambardella P. 2015 Nat. Phys. 11 570 10.1038/nphys3356 Avci C. O., Garello K., Ghosh A., Gabureac M., Alvarado S. F. and Gambardella P. Nat. Phys. 11 2015 570 [9] Kim J., Sheng P., Takahashi S., Mitani S. and Hayashi M. 2016 Phys. Rev. Lett. 116 097201 10.1103/PhysRevLett.116.097201 Kim J., Sheng P., Takahashi S., Mitani S. and Hayashi M. Phys. Rev. Lett. 116 097201 2016 [10] Vélez S., Golovach V. N., Bedoya-Pinto A., Isasa M., Sagasta E., Abadia M., Rogero C., Hueso L. E., Bergeret F. S. and Casanova F. 2016 Phys. Rev. Lett. 116 016603 10.1103/PhysRevLett.116.016603 Vélez S., Golovach V. N., Bedoya-Pinto A., Isasa M., Sagasta E., Abadia M., Rogero C., Hueso L. E., Bergeret F. S. and Casanova F. Phys. Rev. Lett. 116 016603 2016 [11] Dyakonov M. 2007 Phys. Rev. Lett. 99 126601 10.1103/PhysRevLett.99.126601 Dyakonov M. Phys. Rev. Lett. 99 126601 2007 [12] Nakayama H., Kanno Y., An H., Tashiro T., Haku S., Nomura A. and Ando K. 2016 Phys. Rev. Lett. 117 116602 10.1103/PhysRevLett.117.116602 Nakayama H., Kanno Y., An H., Tashiro T., Haku S., Nomura A. and Ando K. Phys. Rev. Lett. 117 116602 2016 [13] Tserkovnyak Y., Brataas A., Bauer G. E. W. and Halperin B. I. 2005 Rev. Mod. Phys. 77 1375 10.1103/RevModPhys.77.1375 Tserkovnyak Y., Brataas A., Bauer G. E. W. and Halperin B. I. Rev. Mod. Phys. 0034-6861 77 2005 1375 [14] Saitoh E., Ueda M., Miyajima H. and Tatara G. 2006 Appl. Phys. Lett. 88 182509 10.1063/1.2199473 Saitoh E., Ueda M., Miyajima H. and Tatara G. Appl. Phys. Lett. 88 182509 2006 [15] Sánchez J. C. R., Vila L., Desfonds G., Gambarelli S., Attané J. P., De Teresa J. M., Magén C. and Fert A. 2013 Nat. Commun. 4 2944 10.1038/ncomms3944 Sánchez J. C. R., Vila L., Desfonds G., Gambarelli S., Attané J. P., De Teresa J. M., Magén C. and Fert A. Nat. Commun. 4 2013 2944 [16] Ganzhorn K., Barker J., Schlitz R., Piot B. A., Ollefs K., Guillou F., Wilhelm F., Rogalev A., Opel M., Althammer M., Geprägs S., Huebl H., Gross R., Bauer G. E. W. and Goennenwein S. T. B. 2016 Phys. Rev. B 94 094401 10.1103/PhysRevB.94.094401 Ganzhorn K., Barker J., Schlitz R., Piot B. A., Ollefs K., Guillou F., Wilhelm F., Rogalev A., Opel M., Althammer M., Geprägs S., Huebl H., Gross R., Bauer G. E. W. and Goennenwein S. T. B. Phys. Rev. B 94 094401 2016 [17] Aqeel A., Vlietstra N., Heuver J. A., Bauer G. E. W., Noheda B., van Wees B. J. and Palstra T. T. M. 2015 Phys. Rev. B 92 224410 10.1103/PhysRevB.92.224410 Aqeel A., Vlietstra N., Heuver J. A., Bauer G. E. W., Noheda B., van Wees B. J. and Palstra T. T. M. Phys. Rev. B 92 224410 2015 [18] Isasa M., Vélez S., Sagasta E., Bedoya-Pinto A., Dix N., Sánchez F., Hueso L. E., Fontcuberta J. and Casanova F. 2016 Phys. Rev. Appl. 6 034007 10.1103/PhysRevApplied.6.034007 Isasa M., Vélez S., Sagasta E., Bedoya-Pinto A., Dix N., Sánchez F., Hueso L. E., Fontcuberta J. and Casanova F. Phys. Rev. Appl. 6 034007 2016 [19] Quindeau A., Avci C. O., Liu W., Sun C., Mann M., Tang A. S., Onbasli M. C., Bono D., Voyles P. M., Xu Y., Robinson J., Beach G. S. D. and Ross C. A. 2017 Adv. Electron. Mater. 3 1600376 10.1002/aelm.201600376 Quindeau A., Avci C. O., Liu W., Sun C., Mann M., Tang A. S., Onbasli M. C., Bono D., Voyles P. M., Xu Y., Robinson J., Beach G. S. D. and Ross C. A. Adv. Electron. Mater. 3 2017 1600376 [20] Sinova J., Valenzuela S. O., Wunderlich J., Back C. H. and Jungwirth T. 2015 Rev. Mod. Phys. 87 1213 10.1103/RevModPhys.87.1213 Sinova J., Valenzuela S. O., Wunderlich J., Back C. H. and Jungwirth T. Rev. Mod. Phys. 0034-6861 87 2015 1213 [21] Miao B. F., Huang S. Y., Qu D. and Chien C. L. 2016 AIP Adv. 6 015018 10.1063/1.4941340 Miao B. F., Huang S. Y., Qu D. and Chien C. L. AIP Adv. 6 015018 2016 [22] Althammer M., Mukherjee J., Geprägs S., Goennenwein S. T., Opel M., Rao M. and Gross R. 2017 Appl. Phys. Lett. 110 052403 10.1063/1.4975372 Althammer M., Mukherjee J., Geprägs S., Goennenwein S. T., Opel M., Rao M. and Gross R. Appl. Phys. Lett. 110 052403 2017 [23] Shen K., Vignale G. and Raimondi R. 2014 Phys. Rev. Lett. 112 096601 10.1103/PhysRevLett.112.096601 Shen K., Vignale G. and Raimondi R. Phys. Rev. Lett. 112 096601 2014 [24] Edelstein V. M. 1990 Solid State Commun. 73 233 10.1016/0038-1098(90)90963-C Edelstein V. M. Solid State Commun. 0038-1098 73 1990 233 [25] Niimi Y., Wei D., Idzuchi H., Wakamura T., Kato T. and Otani Y. 2013 Phys. Rev. Lett. 110 016805 10.1103/PhysRevLett.110.016805 Niimi Y., Wei D., Idzuchi H., Wakamura T., Kato T. and Otani Y. Phys. Rev. Lett. 110 016805 2013 [26] Rojas-Sánchez J. C., Reyren N., Laczkowski P., Savero W., Attané J. P., Deranlot C., Jamet M., George J.-M., Vila L. and Jaffrès H. 2014 Phys. Rev. Lett. 112 106602 10.1103/PhysRevLett.112.106602 Rojas-Sánchez J. C., Reyren N., Laczkowski P., Savero W., Attané J. P., Deranlot C., Jamet M., George J.-M., Vila L. and Jaffrès H. Phys. Rev. Lett. 112 106602 2014 [27] Bass J. and Pratt W. P. Jr. 2007 J. Phys.: Condens. Matter 19 183201 10.1088/0953-8984/19/18/183201 Bass J. and Pratt W. P.Jr. J. Phys.: Condens. Matter 0953-8984 19 18 183201 2007 [28] Fischer G., Hoffmann H. and Vancea J. 1980 Phys. Rev. B 22 6065 10.1103/PhysRevB.22.6065 Fischer G., Hoffmann H. and Vancea J. Phys. Rev. B 0163-1829 22 1980 6065 [29] Hou D., Qiu Z., Harii K., Kajiwara Y., Uchida K., Fujikawa Y., Nakayama H., Yoshino T., An T., Ando K., Jin X. and Saitoh E. 2012 Appl. Phys. Lett. 101 042403 10.1063/1.4738786 Hou D., Qiu Z., Harii K., Kajiwara Y., Uchida K., Fujikawa Y., Nakayama H., Yoshino T., An T., Ando K., Jin X. and Saitoh E. Appl. Phys. Lett. 101 042403 2012 Publisher Copyright: © 2017 The Japan Society of Applied Physics.
PY - 2017
Y1 - 2017
N2 - We have theoretically investigated the spin Hall magnetoresistance (SMR) and Rashba-Edelstein magnetoresistance (REMR), mediated by spin currents, in a ferrimagnetic insulator/nonmagnetic metal/heavy metal system in the diffusive regime. The magnitude of both SMR and REMR decreases with increasing thickness of the interlayer because of the current shunting effect and the reduction in spin accumulation across the interlayer. The latter contribution is due to driving a spin current and persists even in the absence of spin relaxation, which is essential for understanding the magnetoresistance ratio in trilayer structures.
AB - We have theoretically investigated the spin Hall magnetoresistance (SMR) and Rashba-Edelstein magnetoresistance (REMR), mediated by spin currents, in a ferrimagnetic insulator/nonmagnetic metal/heavy metal system in the diffusive regime. The magnitude of both SMR and REMR decreases with increasing thickness of the interlayer because of the current shunting effect and the reduction in spin accumulation across the interlayer. The latter contribution is due to driving a spin current and persists even in the absence of spin relaxation, which is essential for understanding the magnetoresistance ratio in trilayer structures.
UR - http://www.scopus.com/inward/record.url?scp=85026369131&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85026369131&partnerID=8YFLogxK
U2 - 10.7567/JJAP.56.040306
DO - 10.7567/JJAP.56.040306
M3 - Article
AN - SCOPUS:85026369131
VL - 56
JO - Japanese Journal of Applied Physics, Part 1: Regular Papers & Short Notes
JF - Japanese Journal of Applied Physics, Part 1: Regular Papers & Short Notes
SN - 0021-4922
IS - 4
M1 - 040306
ER -