Spectrally shaping high-temperature radiators for thermophotovoltaics using Mo-HfO2 trilayer-on-substrate structures

Etienne Blandre, Makoto Shimizu, Asaka Kohiyama, Hiroo Yugami, Pierre Olivier Chapuis, Rodolphe Vaillon

Research output: Contribution to journalArticlepeer-review

12 Citations (Scopus)

Abstract

Easy-to-fabricate, high-temperature, thermally-stable radiators are critical elements for developing e cient and sustainable thermophotovoltaic energy conversion devices. In this frame, a trilayer-on-substrate structure is selected. It is composed of a refractory metal - molybdenum - constituting the substrate and an intermediate thin film sandwiched between two hafnia transparent layers. An in-depth analysis shows that two spectrally distinct interference regimes take place in the hafnia layer-molybdenum thin film substructure, and that backward and forward thermally-emitted waves by the thin film are selected in two distinct interferential resonating cavities. The interference regimes within and between these cavities are key to the spectral shaping of thermal emission. The radiative performances of the structures are evaluated by introducing a figure of merit. Using the example of a GaSb cell, it is shown that the structure can be optimized for providing the broadband large emission with a steep cuto required for mitigating photoconversion losses.

Original languageEnglish
Pages (from-to)4346-4357
Number of pages12
JournalOptics Express
Volume26
Issue number4
DOIs
Publication statusPublished - 2018 Feb 19

ASJC Scopus subject areas

  • Atomic and Molecular Physics, and Optics

Fingerprint

Dive into the research topics of 'Spectrally shaping high-temperature radiators for thermophotovoltaics using Mo-HfO<sub>2</sub> trilayer-on-substrate structures'. Together they form a unique fingerprint.

Cite this